Modulation of cAMP metabolism for CFTR potentiation in human airway epithelial cells.

Sci Rep

Division of Respirology, Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, L8N 4A6, Canada.

Published: January 2021

Cystic fibrosis (CF) is a genetic disease characterized by CF transmembrane regulator (CFTR) dysfunction. With over 2000 CFTR variants identified, in addition to known patient to patient variability, there is a need for personalized treatment. The discovery of CFTR modulators has shown efficacy in certain CF populations, however there are still CF populations without valid therapeutic options. With evidence suggesting that single drug therapeutics are insufficient for optimal management of CF disease, there has been an increased pursuit of combinatorial therapies. Our aim was to test cyclic AMP (cAMP) modulation, through ATP Binding Cassette Transporter C4 (ABCC4) and phosphodiesterase-4 (PDE-4) inhibition, as a potential add-on therapeutic to a clinically approved CFTR modulator, VX-770, as a method for increasing CFTR activity. Human airway epithelial cells (Calu-3) were used to test the efficacy of cAMP modulation by ABCC4 and PDE-4 inhibition through a series of concentration-response studies. Our results showed that cAMP modulation, in combination with VX-770, led to an increase in CFTR activity via an increase in sensitivity when compared to treatment of VX-770 alone. Our study suggests that cAMP modulation has potential to be pursued as an add-on therapy for the optimal management of CF disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807051PMC
http://dx.doi.org/10.1038/s41598-020-79555-wDOI Listing

Publication Analysis

Top Keywords

camp modulation
16
human airway
8
airway epithelial
8
epithelial cells
8
optimal management
8
management disease
8
pde-4 inhibition
8
cftr activity
8
cftr
7
modulation
5

Similar Publications

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered.

View Article and Find Full Text PDF

Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.

View Article and Find Full Text PDF

In a previous report, we showed that voltage-gated K+ (Kv) Kv1 and Kv2 channels are involved in cAMP-induced neuritogenesis of mouse neuronal N2A cells. In this report, we examined the effects of tannic acid (TA) on Kv channels and neuritogenesis in N2A cells. TA (15 μM) mildly enhanced Kv currents at -30 to -20 mV but strongly inhibited Kv currents at higher voltages, causing a preferential activation of currents at low voltages.

View Article and Find Full Text PDF

Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!