Hijacking of host metabolic status by a pathogen for its regulated dissemination from the host is prerequisite for the propagation of infection. M. tuberculosis secretes an NAD-glycohydrolase, TNT, to induce host necroptosis by hydrolyzing Nicotinamide adenine dinucleotide (NAD). Herein, we expressed TNT in macrophages and erythrocytes; the host cells for M. tuberculosis and the malaria parasite respectively, and found that it reduced the NAD levels and thereby induced necroptosis and eryptosis resulting in premature dissemination of pathogen. Targeting TNT in M. tuberculosis or induced eryptosis in malaria parasite interferes with pathogen dissemination and reduction in the propagation of infection. Building upon our discovery that inhibition of pathogen-mediated host NAD modulation is a way forward for regulation of infection, we synthesized and screened some novel compounds that showed inhibition of NAD-glycohydrolase activity and pathogen infection in the nanomolar range. Overall this study highlights the fundamental importance of pathogen-mediated modulation of host NAD homeostasis for its infection propagation and novel inhibitors as leads for host-targeted therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806871PMC
http://dx.doi.org/10.1038/s41420-020-00366-zDOI Listing

Publication Analysis

Top Keywords

propagation infection
8
malaria parasite
8
host nad
8
host
7
pathogen
5
nad
5
infection
5
pathogen induced
4
induced subversion
4
subversion nad
4

Similar Publications

Background: Fulminant type 1 diabetes mellitus (FT1DM) is a severe subtype of type 1 diabetes characterized by rapid onset, metabolic disturbances, and irreversible insulin secretion failure. Recent studies have suggested associations between FT1DM and certain medications, warranting further investigation.

Objectives: This study aims to analyze drugs associated with an increased risk of FT1DM using the Food and Drug Administration Adverse Event Reporting System (FAERS) database.

View Article and Find Full Text PDF

Neuropathology, pathomechanism, and transmission in zoonotic Borna disease virus 1 infection: a systematic review.

Lancet Infect Dis

January 2025

Department of Neuropathology, Medical Faculty, University of Augsburg, Augsburg, Germany; Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany. Electronic address:

Borna disease, which is a severe encephalitis that primarily affects horses and sheep, has been recognised for over two centuries. Borna disease virus 1 (BoDV-1) has been identified as a cause of a predominantly fatal encephalitis in humans. Little scientific data exist regarding the virus' transmission, entry portal, and excretion routes.

View Article and Find Full Text PDF

Hantaan virus glycoprotein Gc induces NEDD4-dependent PTEN ubiquitination and degradation to escape the restriction of autophagosomes and facilitate viral propagation.

FASEB J

January 2025

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.

Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.

View Article and Find Full Text PDF

A High-Throughput Screening Pipeline to Identify Methyltransferase and Exonuclease Inhibitors of SARS-CoV-2 NSP14.

Biochemistry

January 2025

National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.

SARS-CoV-2 infections led to a worldwide pandemic in 2020. As of 2024, therapeutics against SARS-CoV-2 have continued to be desirable. NSP14 is a dual-function methyltransferase (MTase) and exonuclease (ExoN) with key roles in SARS-CoV-2 genome propagation and host immune system evasion.

View Article and Find Full Text PDF

Prediction of cccDNA dynamics in hepatitis B patients by a combination of serum surrogate markers.

PLoS Comput Biol

January 2025

Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!