Temporal dynamics and mechanisms underlying epigenetic changes in Huntington's disease (HD), a neurodegenerative disease primarily affecting the striatum, remain unclear. Using a slowly progressing knockin mouse model, we profile the HD striatal chromatin landscape at two early disease stages. Data integration with cell type-specific striatal enhancer and transcriptomic databases demonstrates acceleration of age-related epigenetic remodelling and transcriptional changes at neuronal- and glial-specific genes from prodromal stage, before the onset of motor deficits. We also find that 3D chromatin architecture, while generally preserved at neuronal enhancers, is altered at the disease locus. Specifically, we find that the HD mutation, a CAG expansion in the Htt gene, locally impairs the spatial chromatin organization and proximal gene regulation. Thus, our data provide evidence for two early and distinct mechanisms underlying chromatin structure changes in the HD striatum, correlating with transcriptional changes: the HD mutation globally accelerates age-dependent epigenetic and transcriptional reprogramming of brain cell identities, and locally affects 3D chromatin organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807045 | PMC |
http://dx.doi.org/10.1038/s41467-020-20605-2 | DOI Listing |
Sci China Life Sci
December 2024
Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied.
View Article and Find Full Text PDFDev Cell
December 2024
Departments of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address:
Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: African Americans (AA) are disproportionally burdened by Alzheimer's disease (AD), but there is a scarcity of research focusing on understanding the neuroimmune component of AD pathogenesis in this population. It is generally accepted that microglia would be an ideal therapeutic target for AD and that genetic, lifestyle, societal and environmental factors and stressors have the potential to shape microglia phenotypes and their contribution to neurodegenerative processes. The overarching goal of the current study is to establish the population structure of microglia in older AAs and to investigate the relationship of the different microglia subsets with histopathological hallmarks of brain aging and AD in AAs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: The effect size of APOE4 varies across genetic ancestries with African (AFR) local ancestry conferring a lower risk when compared to other ancestries. Recently, we identified a strong effect of the A allele of rs10423769 (with a minor allele frequency of 0.12 in AFR and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!