The genus (Lamiaceae) is native to Central, South-Central, and Eastern Asia. It comprises 44 species, which have been commonly used as herbal medicines for the treatments of various ailments for thousands of years, especially in Asian countries. This review aims to summarize the chemical constituents and pharmacological activities of species from the genus to unveil opportunities for future research. In addition, we provide some information about their traditional uses, botany, and diversity. More than 150 secondary metabolites have been reported from , including diterpenes, flavonoids, phenolic compounds, triterpenoids, iridoid glycosides, lignans, steroids, alkaloids, polysaccharides, volatile, non-volatile and aromatic compounds, lipids, carbohydrates, minerals, vitamins, and other secondary metabolites. and pharmacological studies on the crude extracts, fractions, and isolated compounds from species showed hemostatic, antibacterial, anti-inflammatory, anti-allergic, cytotoxic, enzyme inhibitory, antispasmodic, hypotensive, sedative, psychoactive, and other activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826601 | PMC |
http://dx.doi.org/10.3390/plants10010132 | DOI Listing |
Front Pharmacol
January 2025
School Hospital, Guizhou Medical University, Guiyang, China.
Thunb. (. ) is a shrub or tree of the genus , family Lamiaceae, which is widely distributed in China, Korea, India, Japan and Philippines.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland.
Plants of the genus, known for their rich phytochemical profiles, are used in traditional Chinese, Korean, Japanese, and Indian medicine to treat various ailments, including inflammation, hypertension, diabetes, hyperlipidemia, and cancer. Due to the limited natural availability of these plants, there is a growing interest in utilizing in vitro culture techniques to produce their bioactive compounds sustainably. In this study, the effects are compared of Murashige and Skoog (MS), Woody Plant medium (WP), Gamborg B5 (B5), and Schenk and Hildebrandt (SH) basal media on growth, biomass accumulation, and polyphenolic compound production in shoot cultures of and .
View Article and Find Full Text PDFSci Data
January 2025
Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea.
Salvia sclarea is a medicinal herb from the Lamiaceae family, valued for its essential oil which contains sclareol, linalool, linalyl acetate, and other compounds. Despite its extensive use, the genetic mechanisms of S. sclarea are not well understood.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
Key Laboratory of Tibetan Medicine Resources Conservation and Utilization of Tibet Autonomous Region, Xizang Agricultural and Animal Husbandry University Nyingchi 860000, China the Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry University Nyingchi 860000, China the Center for Xizang Chinese (Tibetan) Medicine Resource,Xizang Agricultural and Animal Husbandry University Nyingchi 860000, China Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Xizang Nyingchi 860000, China.
The chemical constituents of Dracocephalum tanguticum were investigated using normal-and reverse-phase silica gel column chromatography, RP-HPLC, and other separation techniques, combined with experimental methods such as NMR, UV, IR, MS, and ORD, as well as comparison with reported literature data. From the ethanol extract of D. tanguticum, 10 compounds were isolated and identified: dracotangusion C(1),(1R,4S,5S,10R)-(+)-germacrone-1(10)-4-diepoxide(2), 1β,4β,5β-trihydroxy-7(11),9-germacradien-8-one(3), curcumadione(4), β-sitosterol(5), lilacoside(6), diosmetin-7-O-β-D-glucopyranoside(7), diosmin(8), luteolin-7-O-glucoside(9), and luteolin(10).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!