As many industrial applications require real-time and reliability communication, a variety of routing graph construction schemes were proposed to satisfy the requirements in Industrial Wireless Sensor Networks (IWSNs). Each device transmits packet through a route which is designated based on the graph. However, as existing studies consider a network consists of static devices only, they cannot cope with the network changes by movement of mobile devices considered important in the recent industrial environment. Thus, the communication requirements cannot be guaranteed because the existing path is broken by the varying network topology. The communication failure could cause critical problems such as malfunctioning equipment. The problem is caused repeatedly by continuous movement of mobile devices, even if a new graph is reconstructed for responding the changed topology. To support mobile devices exploited in various industrial environments, we propose a Hierarchical Routing Graph Construction (HRGC). The HRGC is consisted of two phases for hierarchical graph construction: In first phase, a robust graph called skeleton graph consisting only of static devices is constructed. The skeleton graph is not affected by network topology changes and does not suffer from packet loss. In second phase, the mobile devices are grafted into the skeleton graph for seamless communication. Through the grafting process, the routes are established in advance for mobile device to communicate with nearby static devices in anywhere. The simulation results show that the packet delivery ratio is improved when the graph is constructed through the HRGC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827090 | PMC |
http://dx.doi.org/10.3390/s21020458 | DOI Listing |
JMIR Form Res
December 2024
Child and Adolescent Psychiatry & Psychosocial Care, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
Background: Delinquent behavior in adolescence is a prevalent issue, often associated with difficulties across multiple life domains, which in turn perpetuates negative life outcomes. While current treatment programs show partial success in improving behavioral changes and reducing recidivism, comprehensive conclusions regarding the overall efficacy of these interventions have yet to be established. In forensic outpatient settings, the discrepancy between adolescents' limited emotional awareness and the predominant emphasis on cognitive reflection, combined with low treatment adherence, may be factors that undermine treatment efficacy.
View Article and Find Full Text PDFJ Med Internet Res
December 2024
Institute for Musculoskeletal Health, Sydney Local Health District, Sydney, Australia.
Background: Advanced technologies are becoming increasingly accessible in rehabilitation. Current research suggests technology can increase therapy dosage, provide multisensory feedback, and reduce manual handling for clinicians. While more high-quality evidence regarding the effectiveness of rehabilitation technologies is needed, understanding of how to effectively integrate technology into clinical practice is also limited.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands.
Background: With the increasing number of potential interventions for Alzheimer's Disease (AD), there is a growing need to detect meaningful cognitive changes early in the disease. Frequent passive monitoring of smartphone behaviour, such as typing speed and precision, can give insight into the cognitive changes in AD. In the 'A personalized Medicine Approach for AD' (ABOARD)-project we investigated the reliability and validity of typing behaviour to monitor cognition in people with and without AD.
View Article and Find Full Text PDFBackground: Interest in use of digital technology to advance AD/ADRD research has been growing exponentially over the last few years. This acceleration is fueled in part by growing awareness that both well used research methods as well as newer biomarker approaches are 1) inadequate for clinical symptom detection in the earliest stages of an insidious onset disease and 2) have resulted in inaccurate as well as biased data that is generating treatment and prevention solutions that are insufficiently relevant to some and potentially not relevant to many.
Methods: Sensors embedded in mobile devices such as smartphones and wearables deliver a high penetration, low-cost solution for overcoming previous limitations of early detection sensitivity and limited representative reach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!