Selective multi-wavelength infrared emission by stacked gap-plasmon thermal emitters.

Nanotechnology

Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan.

Published: April 2021

Selective multi-wavelength infrared light sources are important elements to achieve precise molecular detection by the usage of their intrinsic vibrational spectra. In this work, we proposed a double-stacked cross-shaped metal-dielectric-metal (MDM) resonator to achieve penta-wavelength mid-infrared thermal emission. Through the optimization of un-symmetric cross-shaped tri-layers incorporated with two sandwiched dielectric materials, four distinct emission bands associated with the magnetic resonances in stacked MDM resonators were realized, which shows nondispersive and polarization-dependent property due to the localized plasmon oscillations of the magnetic resonances. In addition, the phonon emission in the silicon dioxide layer also contributes one radiation peak at λ = 10 μm. Via a simple polarization rotator, the emission wavelengths can be tuned from 4.5 and 7.5 μm to 5.5 and 8.5 μm. This paves the way for simultaneous detection of multi-band molecular absorption fingerprint, and the polarization-tunable emission wavelengths also facilitate the possibility to achieve multi-compound sensing via one compact system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abdb63DOI Listing

Publication Analysis

Top Keywords

selective multi-wavelength
8
multi-wavelength infrared
8
magnetic resonances
8
emission wavelengths
8
emission
6
infrared emission
4
emission stacked
4
stacked gap-plasmon
4
gap-plasmon thermal
4
thermal emitters
4

Similar Publications

Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:

The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.

View Article and Find Full Text PDF

Research on Lettuce Canopy Image Processing Method Based on Hyperspectral Imaging Technology.

Plants (Basel)

December 2024

Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China.

For accurate segmentation of lettuce canopy images, dealing with uneven illumination and background interference, hyperspectral imaging technology was applied to capture images of lettuce from the rosette to nodule stages. The spectral ratio method was used to select the characteristic wavelengths, and the characteristic wavelength images were denoised and image fused before being processed by filtering and threshold segmentation. To verify the accuracy of this segmentation method, the manual segmentation method and the segmentation method used in this study were compared, and the area overlap degree (AOM) and misclassification rate (ME) were used as criteria to evaluate the segmentation results.

View Article and Find Full Text PDF

We characterize luminosity components of Ultra/Luminous Infrared Galaxies (U/LIRGs) in multi-wavelength from the X-ray to far-infrared. A set of 63 AGN U/LIRGs was selected where these galaxies are powered by a central active galactic nucleus (AGN). Utilizing the X-CIGALE code, SEDs for these galaxies are carried out where their SEDs are fitted with observations.

View Article and Find Full Text PDF

Adaptively multi-scale microstructure characterization of cancellous bone via Photoacoustic signal decomposition.

Ultrasonics

December 2024

Institute of Biomedical Engineering & Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China. Electronic address:

Osteoporosis is a systemic disease with a high incidence in the elderly and seriously affects the quality of life of patients. Photoacoustic (PA) technology, which combines the advantages of light and ultrasound, can provide information about the physiological structure and chemical information of biological tissues in a non-invasive and non-radiative way. Due to the complex structural characteristics of bone tissue, PA signals generated by bone tissue are non-stationary and nonlinear.

View Article and Find Full Text PDF

Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900-1800 cm and 2800-3100 cm and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!