Gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter in the mature brain. At an early developmental period, it acts in an excitatory manner that influences many processes of proliferation, migration, and differentiation of the neurons. Previous evidence indicated that manipulation of the GABAergic system function by activation or blockade of its receptors during developmental periods leads to behavioral and cognitive abnormality in adulthood. Therefore, we examined the effects of neonatal blockade of GABA-A receptors by bicuculline on behavior, cognitive function, and hippocampal and prefrontal cortex (PFC) brain-derived neurotrophic factors level (BDNF) in adulthood. As a result, neonatal rats were treated with either bicuculline (75,150, and 300 μg/kg) or DMSO on postnatal days 7,9, and 11. These groups underwent the behavioral (open field, elevated plus maze, and hot plate) and learning and memory (passive avoidance learning and memory) tests in postnatal days (PNDs) 61-70. After the ending of the behavioral tests, the rats were sacrificed under deep anesthesia and the hippocampi and prefrontal cortex (PFC) of the brain were removed for assessing the BDNF mRNA expression. Our results indicated that neonatal administration of bicuculline at the highest dose increased passive avoidance memory and hippocampal BDNF level. Meanwhile, this drug at a low dose impaired this type of memory and increased PFC BDNF level. Besides, treatment with bicuculline during postnatal days increased anxiety and pain sensitivity in a dose-dependent manner. Taken together, these findings confirmed the notion that GABA-A receptors during the developmental period are important for programming neurobehavioral phenotypes in adult life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2021.01.006DOI Listing

Publication Analysis

Top Keywords

bdnf level
12
gaba-a receptors
12
postnatal days
12
behavior cognitive
8
cognitive function
8
neonatal blockade
8
blockade gaba-a
8
developmental period
8
receptors developmental
8
prefrontal cortex
8

Similar Publications

Abdominal LIPUS Stimulation Prevents Cognitive Decline in Hind Limb Unloaded Mice by Regulating Gut Microbiota.

Mol Neurobiol

January 2025

Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

Weightlessness usually causes disruption of the gut microbiota and impairs cognitive function. There is a close connection between gut microbiota and neurological diseases. Low-intensity pulsed ultrasound (LIPUS) has a beneficial effect on reducing intestinal inflammation.

View Article and Find Full Text PDF

Postpartum depression (PPD) adversely affects the growth and development of the offspring, increasing the risk of various internalizing behaviorsduring adolescence. Studies have shown that corticosterone (CORT)-induced PPD affects neurogenesis in the offspring, which is closely related to the onset of depression. However, the underlying mechanisms of these changes in the offspring of PPD mothers remain unexplored.

View Article and Find Full Text PDF

Objective: To investigate the correlation between BDNF gene polymorphism, BDNF levels, and susceptibility to mild cognitive impairment (MCI).

Methods: In this study, we investigated 107 elderly adults individuals from a community in Zhongshan, Guangdong Province, with an average age of 73.17 ± 7.

View Article and Find Full Text PDF

Stress is linked to oxidative imbalance, neuroendocrine system malfunction, and cognitive dysfunction. It is a recognized cause of neuropsychiatric diseases. Natural flavonoid apigenin (API) has neuroprotective and antidepressant properties, but little is known about its potential in restoring memory function under stress-related circumstances.

View Article and Find Full Text PDF

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!