Graphene quantum dots (GQDs) could be regarded as graphene with a lateral dimension less than 100 nm. Compared with graphene, GQDs not only possess the excellent properties of graphene but also have been proven to have low toxicity, high fluorescence stability, strong water solubility, as well as better biocompatibility. In this work, an amide bond-based, N-doped graphene quantum dot was synthesized using a simple hydrothermal method. When the reaction time was 4 h and the temperature was 180°C, fluorescence excitation and emission peaks of the product were 340 nm and 450 nm, respectively. Its interaction with human serum albumin (HSA) was investigated using spectroscopy, gel electrophoresis, and molecular simulation. Gel electrophoresis showed that the product did not cause complete scission of the peptide chain in HSA, indicating good biocompatibility. The results of molecular docking showed that the product tended to bind to site III of HSA. This paper provides a meaningful reference for design and development in nanomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bio.4012 | DOI Listing |
Sensors (Basel)
January 2025
Institute of Physics, University of Tartu, EE-50411 Tartu, Estonia.
Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFToxics
December 2024
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
The high-efficiency ball milling treatment technology primarily combines the excitation of oxidation processes with high-speed physical collisions, thereby promoting the reaction processes and enhancing the degradation effectiveness of materials. This technology has gained widespread attention in recent years for its application in the degradation of organic solid chemical pollutants. In this study, quantum chemical density functional theory (DFT) was employed to first analyze the impact of electron addition and subtraction on molecular chemical bonds.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil.
The recent synthesis of goldene, a 2D atomic monolayer of gold, has opened new avenues in exploring novel materials. However, the question of when multilayer goldene transitions into bulk gold remains unresolved. This study used density functional theory calculations to address this fundamental question.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!