Epigenetic marks or post-translational modifications on histones have important regulatory roles in gene expression in eukaryotic organisms. The epigenetic regulation of gene expression in the pathogenic yeast Cryptococcus deneoformans remains largely undetermined. The YEATS domain proteins are readers of crotonylated lysine residues in histones. Here, we reported the identification of a single-copy gene putatively coding for a YEATS domain protein (Yst1) in C. deneoformans. To define its function, we created a mutant strain, yst1Δ, using CRISPR-Cas9 editing. yst1Δ exhibited defects in phenotype, for instance, it was hypersensitive to osmotic stress in the presence of 1.3 M NaCl or KCl. Furthermore, it was hypersensitive to 1% Congo red, suggesting defects in the cell wall. Interestingly, RNA-seq data revealed that Yst1p was critical for the expression of genes encoding the ribosomal proteins, that is, most were expressed with significantly lower levels of mRNA in yst1Δ than in the wild-type strain. The mutant strain was hypersensitive to low temperature and anti-ribosomal drugs, which we putatively attribute to the impairment in ribosomal function. In addition, the yst1Δ strain was less virulent to Galleria mellonella. These results generally suggest that Yst1, as a histone modification reader, might be a key coordinator of the transcriptome of this human pathogen. Yst1 could be a potential target for novel antifungal drugs, which might lead to significant developments in the clinical treatment of cryptococcosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsyr/foab001 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFDifferentiation of antigen-activated B cells into pro-proliferative germinal center (GC) B cells depends on the activity of the transcription factors MYC and BCL6, and the epigenetic writers DOT1L and EZH2. GCB-like Diffuse Large B Cell Lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!