Mitochondrial dysfunction is postulated to be central to amyotrophic lateral sclerosis (ALS) pathophysiology. Evidence comes primarily from disease models and conclusive data to support bioenergetic dysfunction in vivo in patients is currently lacking. This study is the first to assess mitochondrial dysfunction in brain and muscle in individuals living with ALS using 31P-magnetic resonance spectroscopy (MRS), the modality of choice to assess energy metabolism in vivo. We recruited 20 patients and 10 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. 31P-MRS was acquired from cerebral motor regions and from tibialis anterior during rest and exercise. Bioenergetic parameter estimates were derived including: ATP, phosphocreatine, inorganic phosphate, adenosine diphosphate, Gibbs free energy of ATP hydrolysis (ΔGATP), phosphomonoesters, phosphodiesters, pH, free magnesium concentration, and muscle dynamic recovery constants. Linear regression was used to test for associations between brain data and clinical parameters (revised amyotrophic functional rating scale, slow vital capacity, and upper motor neuron score) and between muscle data and clinico-neurophysiological measures (motor unit number and size indices, force of contraction, and speed of walking). Evidence for primary dysfunction of mitochondrial oxidative phosphorylation was detected in the brainstem where ΔGATP and phosphocreatine were reduced. Alterations were also detected in skeletal muscle in patients where resting inorganic phosphate, pH, and phosphomonoesters were increased, whereas resting ΔGATP, magnesium, and dynamic phosphocreatine to inorganic phosphate recovery were decreased. Phosphocreatine in brainstem correlated with respiratory dysfunction and disability; in muscle, energy metabolites correlated with motor unit number index, muscle power, and speed of walking. This study provides in vivo evidence for bioenergetic dysfunction in ALS in brain and skeletal muscle, which appears clinically and electrophysiologically relevant. 31P-MRS represents a promising technique to assess the pathophysiology of mitochondrial function in vivo in ALS and a potential tool for future clinical trials targeting bioenergetic dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaa340DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
bioenergetic dysfunction
12
inorganic phosphate
12
resonance spectroscopy
8
dysfunction
8
amyotrophic lateral
8
lateral sclerosis
8
phosphocreatine inorganic
8
motor unit
8
unit number
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Shoolini University, Solan, Himachal Pradesh, India.

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the impairment of cognitive development and disruption of neurocognitive function. This neuropathological condition is marked by neurodegeneration, loss of neural tissue, and the formation of neurofibrillary tangles and Aβ plaques. Various studies reported the utilization of phytoconstituents like fisetin, quercetin, berberine, and xanthohumol for the treatment of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!