Noise type and strength estimation are important in many image processing applications like denoising, compression, video tracking, etc. There are many existing methods for estimation of the type of noise and its strength in digital images. These methods mostly rely on the transform or spatial domain information of images. We propose a hybrid Discrete Wavelet Transform (DWT) and edge information removal based algorithm to estimate the strength of Gaussian noise in digital images. The wavelet coefficients corresponding to spatial domain edges are excluded from noise estimate calculation using a Sobel edge detector. The accuracy of the proposed algorithm is further increased using polynomial regression. Parseval's theorem mathematically validates the proposed algorithm. The performance of the proposed algorithm is evaluated on a standard LIVE image dataset. Benchmarking results show that the proposed algorithm outperforms all other state of the art algorithms by a large margin over a wide range of noise.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3049961DOI Listing

Publication Analysis

Top Keywords

proposed algorithm
16
digital images
8
spatial domain
8
noise
6
algorithm
5
digital image
4
image noise
4
noise estimation
4
estimation dwt
4
dwt coefficients
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!