Cellular cargoes, including lipid droplets and mitochondria, are transported along microtubules using molecular motors such as kinesins. Many experimental and computational studies focused on cargoes with rigidly attached motors, in contrast to many biological cargoes that have lipid surfaces that may allow surface mobility of motors. We extend a mechanochemical three-dimensional computational model by adding coupled-viscosity effects to compare different motor arrangements and mobilities. We show that organizational changes can optimize for different objectives: Cargoes with clustered motors are transported efficiently but are slow to bind to microtubules, whereas those with motors dispersed rigidly on their surface bind microtubules quickly but are transported inefficiently. Finally, cargoes with freely diffusing motors have both fast binding and efficient transport, although less efficient than clustered motors. These results suggest that experimentally observed changes in motor organization may be a control point for transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8108528 | PMC |
http://dx.doi.org/10.1091/mbc.E20-10-0658 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Technology & Innovation Hub, Shirley Ryan AbilityLab, Chicago, IL, USA.
Early screening and evaluation of infant motor development are crucial for detecting motor deficits and enabling timely interventions. Traditional clinical assessments are often subjective, without fully capturing infants' "real-world" behavior. This has sparked interest in portable, low-cost technologies to objectively and precisely measure infant motion at home, with a goal of enhancing ecological validity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicine, Surgery and Dentistry, Center for Neurodegenerative Diseases (CEMAND), University of Salerno, Fisciano, Italy.
Subtle gait and cognitive dysfunction are common in Parkinson's disease (PD), even before most evident clinical manifestations. Such alterations can be assumed as hypothetical phenotypical and prognostic/progression markers. To compare spatiotemporal gait parameters in PD patients with three cognitive status: cognitively intact (PD-noCI), with subjective cognitive impairment (PD-SCI) and with mild cognitive impairment (PD-MCI) in order to detect subclinical gait differences.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, 13620, Gyeonggi-do, Republic of Korea.
Duane retraction syndrome (DRS) is complicated to treat due to its wide spectrum of clinical presentations and the treatment of choice varies among surgeons. To provide insight into this challenging condition, we evaluated the long-term surgical outcomes of esotropic DRS type 1. The surgical motor success, defined as a horizontal deviation of 8 prism diopters (PD) or less, was found in 77.
View Article and Find Full Text PDFLife Sci Alliance
April 2025
Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!