Ionic Current Extraction in an Electrostatic-Fluid-Based Tripolar System for Ethanol Sensing.

ACS Sens

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: March 2021

We report a microfluidics-based tripolar system to extract the ionic current from the gas discharge process for gas sensing, which is structurally and fluidically compatible with the gas chromatography (GC) systems. The tripolar system was fabricated based on the microelectromechanical systems technology and tested as a gas detector with the assistance of a GC column under different external factors, that is, the applied voltages and the gas flow rates. An analytical model is proposed to address the ion extraction behavior under the coupling effect of the electric field and flow field. The extracted ionic current is demonstrated to have a higher signal quality than the corresponding discharge current for ethanol sensing, regarding the signal-to-noise ratio and selectivity. Moreover, the variation behavior of the ionic current corroborates the description of the physical model. The miniaturized tripolar system constitutes an effective approach to ion extraction for gas sensing under the working voltage down to 40 V, which can be applied as a gas detector in a portable GC system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.0c02099DOI Listing

Publication Analysis

Top Keywords

ionic current
16
tripolar system
16
ethanol sensing
8
gas sensing
8
gas detector
8
ion extraction
8
gas
7
system
5
ionic
4
current extraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!