Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage.

ACS Appl Mater Interfaces

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, Guangdong, China.

Published: January 2021

Prussian blue analogs (PBAs) featuring large interstitial voids and rigid structures are broadly recognized as promising cathode materials for sodium-ion batteries. Nevertheless, the conventionally prepared PBAs inevitably suffer from inferior crystallinity and lattice defects, leading to low specific capacity, poor rate capability, and unsatisfied long-term stability. As the Na migration within PBAs is directly dependent on the periodic lattice arrangement, it is of essential significance to improve the crystallinity of PBAs and hence ensure long-range lattice periodicity. Herein, a chemical inhibition strategy is developed to prepare a highly crystallized Prussian blue (NaFe[Fe(CN)]), which displays an outstanding rate performance (78 mAh g at 100 C) and long life-span properties (62% capacity retention after 2000 cycles) in sodium storage. Experimental results and kinetic analyses demonstrate the efficient electron transfer and smooth ion diffusion within the bulk phase of highly crystallized Prussian blue. Moreover, X-ray diffraction and Raman spectroscopy results demonstrate the robust crystalline framework and reversible phase transformation between cubic and rhombohedral within the charge-discharge process. This research provides an innovative way to optimize PBAs for advanced rechargeable batteries from the perspective of crystallinity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20067DOI Listing

Publication Analysis

Top Keywords

prussian blue
16
highly crystallized
12
crystallized prussian
12
sodium storage
8
pbas
5
highly
4
prussian
4
blue
4
blue enhanced
4
enhanced kinetics
4

Similar Publications

Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury.

ACS Nano

January 2025

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, University Town, Guangzhou 510006, China.

Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS.

View Article and Find Full Text PDF

Fully Inkjet-Printed Flexible Graphene-Prussian Blue Platform for Electrochemical Biosensing.

Biosensors (Basel)

January 2025

University of Zagreb, Faculty of Chemical Engineering & Technology, Trg Marka Marulića 19, 10000 Zagreb, Croatia.

Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene-Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!