The indoor environmental quality in classrooms can largely affect children's daily exposure to indoor chemicals in schools. To date, there has not been a comprehensive study of the concentrations of semivolatile organic compounds (SVOCs) in French schools. Therefore, the French Observatory for Indoor Air Quality (OQAI) performed a field study of SVOCs in 308 nurseries and elementary schools between June 2013 and June 2017. The concentrations of 52 SVOCs, including phthalates, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), synthetic musks, and pesticides, were measured in air and settled dust (40 SVOCs in both air and dust, 12 in either air or dust). The results showed that phthalates had the highest concentrations among the SVOCs in both the air and dust. Other SVOCs, including tributyl phosphate, fluorene, phenanthrene, gamma-hexachlorocyclohexane (gamma-HCH, lindane), galaxolide, and tonalide, also showed high concentrations in both the air and dust. Theoretical equations were developed to estimate the SVOC partitioning between the air and settled dust from either the octanol/air partition coefficient or the boiling point of the SVOCs. The regression constants of the equations were determined using the data set of the present study for phthalates and PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ina.12724 | DOI Listing |
Environ Health Perspect
January 2025
Department of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Nevada, Reno, Reno, Nevada, USA.
Background: Coccidioidomycosis, caused by inhalation of spp. spores, is an emerging infectious disease that is increasing in incidence throughout the southwestern US. The pathogen is soil-dwelling, and spore dispersal and human exposure are thought to co-occur with airborne mineral dust exposures, yet fundamental exposure-response relationships have not been conclusively estimated.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFBiological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, China.
The recycling of spent lithium-ion batteries has become a common concern of the whole society, with a large number of studies on recycling management and recycling technology, but there is relatively little study on the pollution release during the recycling process. Pollution will restrict the healthy development of the recycling industry, which makes relevant research very significant. This paper monitored and analyzed the battery recycling pretreatment process in a formal factory, and studied the pollution characteristics of particulate matter, heavy metals, and microplastics under different treatment stages.
View Article and Find Full Text PDFEnviron Res
January 2025
Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:
Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover changes (LCC) influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LCC on dust aerosol concentrations from 2000 to 2020 in northern China. Based on land cover data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LCC and another assuming static land cover since 2000.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!