Electrostatic wrapping of a microfiber around a curved particle.

Soft Matter

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.

Published: April 2021

The dynamics of the wrapping of a charged flexible microfiber around an oppositely charged curved particle immersed in a viscous fluid is investigated. We observe that the wrapping behavior varies with the radius and Young's modulus of the fiber, the radius of the particle, and the ionic strength of the surrounding solution. We find that wrapping is primarily a function of the favorable interaction energy due to electrostatics and the unfavorable deformation energy needed to conform the fiber to the curvature of the particle. We perform an energy balance to predict the critical particle radius for wrapping, finding reasonably good agreement with experimental observations. In addition, we use mathematical modeling and observations of the deflected shape of the free end of the fiber during wrapping to extract a measurement of the Young's modulus of the fiber. We evaluate the accuracy and potential limitations of this in situ measurement when compared to independent mechanical tests.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01857kDOI Listing

Publication Analysis

Top Keywords

curved particle
8
young's modulus
8
modulus fiber
8
particle
5
wrapping
5
electrostatic wrapping
4
wrapping microfiber
4
microfiber curved
4
particle dynamics
4
dynamics wrapping
4

Similar Publications

Self-Assembly of Particles on a Curved Mesh.

Entropy (Basel)

January 2025

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang-Landau method. Using different values for the couplings between first-, second-, and third-neighbor particles, we explore various interaction patterns for the model, ranging from softly repulsive to Lennard-Jones-like and SALR.

View Article and Find Full Text PDF

MPicker: visualizing and picking membrane proteins for cryo-electron tomography.

Nat Commun

January 2025

Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, China.

Advancements in cryo-electron tomography (cryoET) allow the structure of macromolecules to be determined in situ, which is crucial for studying membrane protein structures and their interactions in the cellular environment. However, membranes are often highly curved and have a strong contrast in cryoET tomograms, which masks the signals from membrane proteins. These factors pose difficulties in observing and revealing the structures of membrane proteins in situ.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored how charged colloidal particles assemble at liquid interfaces to enhance the manufacturing of thin film materials.
  • The study combined computational simulations and machine learning, using a new algorithm to analyze particle behavior on curved droplet surfaces.
  • By optimizing particle and substrate charge densities through a deep learning model, the team achieved a 96.4% similarity between simulated and experimental results, improving prediction accuracy while saving computational time.
View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LiNiMnO within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!