We theoretically investigate the feasibility of enhancing the reverse electrodialysis power generation in nanochannels by covering the surface with a polyelectrolyte layer (PEL). Along these lines, two conical nanochannels are considered that differ in the extent of the covering. Each nanochannel connects two large reservoirs filled with KCl electrolytes of different ionic concentrations. Considering the Poisson-Nernst-Planck and Navier-Brinkman equations, finite-element-based numerical simulations are performed under a steady-state. The influences of the PEL properties and the salinity gradient on the reverse electrodialysis characteristics are examined in detail via a thorough parametric study. It is shown that the maximum power generated is an increasing function of the charge density and the thickness of the PEL. This means that the maximum power generated may be theoretically increased to any desired degree by covering the nanochannel surface with a sufficiently dense and thick PEL. Considering a typical PEL with a charge density of 100 mol m-3 and a thickness of 8 nm along with a high-to-low concentration ratio of 1000, we demonstrate that it is possible to extract a power density of 51.5 W m-2, which is nearly three times the maximum achievable value employing bare conical nanochannels at the same salinity gradient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp05974a | DOI Listing |
Food Res Int
January 2025
Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada. Electronic address:
Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and eventually enhancing peptide bioactivities require costly cascades of membranes.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Electrochemistry Excellence Centre (ELEC), Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.
Salinity gradient power (SGP) by reverse electrodialysis is a promising method for converting SGP into electricity. Instead of the conventional approach of using seawater and freshwater, an alternative method involves using highly concentrated salt solutions (brines) alongside seawater or brackish water. Key factors influencing SGP via reverse electrodialysis (SGP-RE) include the properties of ion exchange membranes, particularly their thickness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China.
Ion-selective membranes serve as key materials for reverse electrodialysis (RED) technology in osmotic energy harvesting, and the search for a class of membranes that are economical, highly robust, and sustainable has been a relentless goal for researchers. In this work, all-natural biomass membranes (reed membranes) are often used as a flute diaphragm, which makes the flute produce a brighter and crisper sound, presenting high strength and elasticity. Ultrathin natural reed membranes (thickness of ≈4.
View Article and Find Full Text PDFNanomicro Lett
December 2024
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
Harvesting the immense and renewable osmotic energy with reverse electrodialysis (RED) technology shows great promise in dealing with the ever-growing energy crisis. One key challenge is to improve the output power density with improved trade-off between membrane permeability and selectivity. Herein, polyelectrolyte hydrogels (channel width, 2.
View Article and Find Full Text PDFLangmuir
November 2024
Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
Bipolar membranes (BPMs) with a layer-by-layer (LbL) assembled montmorillonite (K30 MMT) clay-polyelectrolyte (PE) composite junction coated onto a sulfonated poly(ether ether ketone (SPEEK)) electrospun support are prepared, characterized and their water dissociation performance is analyzed. In particular, the focus is on the effect of the presence of the K30 MMT clay as a catalyst for water dissociation, the bilayer number (three, six, and nine), and the PE strength (poly(ethylenimine) (PEI) as a weak PE and poly(diallyl dimethylammonium chloride) (PDADMAC) as a strong PE) on the BPM performance. The BPMs are prepared by electrospinning and hot pressing SPEEK and the Fumion FAA-3 polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!