Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm01874kDOI Listing

Publication Analysis

Top Keywords

crc cscs
12
novel photosensitizer
8
photodynamic therapy
8
colorectal cancer
8
cancer stem
8
stem cells
8
crc
8
cd133-pyro pdt
8
cscs
5
cd133 peptide-conjugated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!