Objectives: Nodular sclerosing adenoses (NSAs) and malignant tumors (MTs) may coexist and are often classified into the same Breast Imaging Reporting and Data System (BI-RADS) category. We aimed to build and validate an ultrasound-based nomogram to distinguish MT from NSA for building a precise sequence of biopsies.
Materials And Methods: The training cohort included 156 patients (156 masses) with NSA or MT at one study institution. We used best subset regression to determine the predictors for building a nomogram from ultrasonic characteristics and patients' age. Model performance and clinical utility were evaluated using Brier score, concordance (C)-index, calibration curve, and decision curve analysis. The independent validation cohort consisted of 162 patients (162 masses) from a separate institution.
Results: Through best subset regression, we selected 6 predictors to develop nomogram: age, calcification, echogenic rim, vascularity distribution, tumor size, and thickness of breast parenchyma. Brier score and C-index of the nomogram in the training cohort were 0.068 and 0.967 (95% confidence interval [CI]: 0.941-0.993), respectively. In addition, calibration curve demonstrated good agreement between prediction and pathological result. In the validation cohort, the nomogram still obtained a favorable C-index score of 0.951 (95% CI: 0.919-0.983) and fine calibration. Decision curve analysis showed that the model was clinically useful.
Conclusions: If multiple NSA and MT masses are present in the same patient and are classified into the same BI-RADS category, our nomogram can be used as a supplement to the BI-RADS category for accurate biopsy of the mass most likely to be MT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jum.15612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!