A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A threshold-based method to predict thyroid nodules on scintigraphy scans. | LitMetric

AI Article Synopsis

  • Nuclear Medicine imaging is crucial for evaluating thyroid abnormalities, distinguishing between high-risk 'cold' nodules and low-risk 'hot' nodules based on radiotracer uptake patterns.
  • The quality of nuclear images often results in subtle density changes that may be overlooked, but a computer-aided detection (CAD) system using pixel density thresholds can enhance the identification of nodules.
  • In tests with 22 nodules, both 'hot' and 'cold', the CAD approach showed strong alignment with expert radiologists' assessments, indicating its potential effectiveness in improving diagnostic accuracy.

Article Abstract

Nuclear Medicine imaging is an important modality to follow up abnormalities of thyroid function tests and to uncover and characterize thyroid nodules either de novo or as previously seen on other imaging modalities, namely ultrasound. In general, the hypofunctioning 'cold' nodules pose a higher malignancy potential than hyperfunctioning 'hot' nodules, for which the risk is <1%. Hot nodules are detected by the radiologist as a region of focal increased radiotracer uptake, which appears as a density of pixels that is higher than surrounding normal thyroid parenchyma. Similarly, cold nodules show decreased density of pixels, corresponding to their decreased uptake of radiotracer, and are photopenic. Partly because Nuclear Medicine images have poor resolution, these density variations can sometimes be subtle, and a second reader computer-aided detection (CAD) scheme that can highlight hot/cold nodules has the potential to reduce false negatives by bringing the radiologists' attention to the occasional overlooked nodules. Our approach subdivides thyroid images into small regions and employs a set of pixel density cutoffs, marking regions that fulfill density criteria. Thresholding is a fundamental tool in image processing. In nuclear medicine, scroll bars to adjust standardized uptake value cutoffs are already in wide commercial use in PET/CT display systems. A similar system could be used for planar thyroid images, whereby the user varies threshold and highlights suspect regions after an initial reader survey of the images. We hypothesized that a thresholding approach would accurately detect both hot and cold thyroid nodules relative to expert readers. Analyzing 22 nodules, half of them hot and the other half cold, we found good agreement between highlighted candidate nodules and the consensus selections of two expert readers, with nonzero overlap between expert and CAD selections in all cases.

Download full-text PDF

Source
http://dx.doi.org/10.1088/2057-1976/ab6500DOI Listing

Publication Analysis

Top Keywords

thyroid nodules
8
threshold-based method
4
method predict
4
predict thyroid
4
nodules
4
nodules scintigraphy
4
scintigraphy scans
4
scans nuclear
4
nuclear medicine
4
medicine imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!