Photodoping of silver into bulk DNA is studied by measuring its ambient electrical conductivity. Mechanically pressed pellets of pure DNA and chemically modified Ag-DNA were prepared and were further coated with silver paste on either side of pellets to monitor the photodoping process. The electrical conductivity of these pellets was continuously measured under white light irradiation. The initial electrical conductivity of these pellets was smaller, that progressively increased with increase in number of current-voltage scan cycles under constant illumination of visible light. The change in electrical conductivity by photodoping is more in a pure DNA as compared to that of chemically modified Ag-DNA. The temperature dependent electrical conductivity exhibits the Arrhenius behavior. A detailed elemental depth profile was studied by core level x-ray photo-electron spectroscopy (XPS). The results clearly suggest that photodoping of silver can alter the DNA's starting electrical conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/ab5c04 | DOI Listing |
Heliyon
January 2025
University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Rua Luís Reis Santos, 3030-788, Coimbra, Portugal.
Recent advancements in aerospace industry demand intricate aero-engine parts, leading to the increased use of titanium alloys, particularly Ti-17, due to its high strength, thermal stability, and corrosion resistance. However, its low thermal conductivity and tool wear tendency pose significant machining challenges, impacting surface integrity, fatigue life, and overall component performance. This study investigates the Wire Electrical Discharge Cutting (WEDC) process, revealing that the mechanism behind improved surface integrity lies in the controlled thermal input, which minimizes phase transformations and reduces residual stresses.
View Article and Find Full Text PDFMater Horiz
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
In recent years, the widespread use of wood products has been observed in many fields. Wooden products have excellent green and environmentally friendly characteristics, but their performance often cannot meet people's needs. Many researchers have conducted in-depth research on wood-based composite materials and their modification methods in order to improve the performance of wood.
View Article and Find Full Text PDFFood Res Int
February 2025
Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China. Electronic address:
Specific spoilage organisms (SSOs) are the key factors affecting the deterioration of large yellow croaker. This study investigated the antibacterial activity and mechanism of Zinc oxide nanoparticles (ZnO-NPs) against Shewanella putrefaciens. The effects of different concentrations of ZnO-NPs (0.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Department of Biomedical Engineering, Air Force Medical University, Xi'an, China.
Background: Acute and critical neurological diseases are often accompanied with elevated intracranial pressure (ICP), leading to insufficient cerebral perfusion, which may cause severe secondary lesion. Existing ICP monitoring techniques often fail to effectively meet the demand for real-time noninvasive ICP monitoring and warning. This study aimed to explore the use of electrical impedance tomography (EIT) to provide real-time early warning of elevated ICP by observing cerebral perfusion.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
MyMilk Laboratories Ltd. Herzliya, Herzliya, Israel.
Background: Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!