There are unrevealed factors that bring about the performance variations of resistive switching devices. In this work, Pt/CeO /Pt devices prepared by magnetron sputtering showed rectification in their asymmetrical current-voltage (I-V) curves during voltage sweeps. X-ray photoelectron spectroscopy showed that the deposited CeO film had an inhomogeneous composition, and more oxygen vacancies existed in CeO near the top electrode. The asymmetrical resistance change of the Pt/CeO /Pt devices can be explained by the presence of more charged oxygen vacancies in CeO near the top electrode, along with the Schottky conduction mechanism. This work reveals that the compositional inhomogeneity is inevitable in the magnetron sputtering of oxide targets like CeO and can be an important source of device-to-device and cycle-to-cycle variations of memristors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abd3ca | DOI Listing |
RSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Institute of Inorganic Chemistry (IAC), Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
Pt-CeO nanosponges (1 wt% Pt) with high surface area (113 m g), high pore volume (0.08 cm g) and small-sized Pt nanoparticles (1.8 ± 0.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
Sintering significantly contributes to the deactivation of supported metal catalysts under reaction conditions, influenced by various factors, including temperature, atmosphere, and metal-support interactions. The sintering mechanism under the reaction conditions remains complex and ambiguous. This study delves into the sintering behavior of platinum on CeO under CO oxidation conditions, mainly employing transmission electron microscopy to elucidate the effects of different gas components on the sintering mechanism at elevated temperatures.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Supported Pt catalysts are often subjected to severe deactivation under the conditions of high temperature and water vapor in catalytic oxidation; thus, the superior stability and water-resistant ability of catalysts have great significance for the effective degradation of volatile organic compounds (VOCs). Herein, we constructed a Pt/CeO-N catalyst with an active interfacial perimeter, in which Pt species were partially embedded in the defective CeO-N support to prevent the sintering. A significant charge transfer between Pt species and ceria in the embedding structure occurred via the Pt-CeO interface, which induced the formation of a Pt-O-Ce interfacial structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!