A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights in the structural understanding of amyloidogenicity and mutation-led conformational dynamics of amyloid beta (Aβ) through molecular dynamics simulations and principal component analysis. | LitMetric

Abnormal protein aggregation in the nervous tissue leads to several neurodegenerative disorders like Alzheimer's disease (AD). In AD, accumulation of the amyloid beta (Aβ) peptide is proposed to be an early important event in pathogenesis. Significant research efforts are devoted so as to understand the Aβ misfolding and aggregation. Molecular dynamics (MD) simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β in relation to the pathologies of AD. Present work describes the MD simulations for 100 ns so as to probe the structural and conformational dynamics of Aβ1-42 assemblies and its mutants. Essential dynamics analysis with respect to conformational deviation of was evaluated to identify the largest residual fluctuation of Conformational stability of all Aβ mutants was analyzed by computing RMSD, deciphering the convergence is reached in the last 20 ns in all replicas. To highlight the low frequency mode of motion corresponding to the highest amplitude, atomic displacements seen in trajectory, distance pair principal component analysis (dpPCA) was performed, which adumbrated mutations strongly affect the conformational dynamics of investigated model when compared with wild type. Dynamic cross correlation matrix (DCCM) also suggests the conserved interactions of wild Aβ and imply mutations in β3-β4 loop region induce deformity and residual fluctuations as observed from simulation. Present study indicate the mutational energy landscape which induces deformation leading to fibrillation.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2021.1871955DOI Listing

Publication Analysis

Top Keywords

conformational dynamics
12
amyloid beta
8
beta aβ
8
molecular dynamics
8
dynamics simulations
8
principal component
8
component analysis
8
dynamics
7
conformational
5
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!