Ursolic acid (UA), found widely in nature, exerts effective anti-tumoral activity against various malignant tumors. However, the low water solubility and poor bioavailability of UA have greatly hindered its translation to the clinic. To overcome these drawbacks, a simple redox-sensitive UA polymeric prodrug was synthesized by conjugating UA to polyethylene glycol using a disulfide bond. This formulation can self-assemble into micelles (U-SS-M) in aqueous solutions to produce small size micelles (∼62.5 nm in diameter) with high drug loading efficiency (∼16.7%) that exhibit pH and reduction dual-sensitivity. The cell and animal studies performed using the osteosarcoma MG-63 cell line and MG-63 cancer xenograft mice as the model systems consistently confirmed that the U-SS-M formulation could significantly prolong the circulation in blood and favor accumulation in tumor tissue. Targeted accumulation allows the U-SS-M to be effectively internalized by cancer cells, where the rapid release of UA is favored by a glutathione-rich and acidic intracellular environment, and ultimately achieves potent antitumor efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808744PMC
http://dx.doi.org/10.1080/10717544.2020.1870583DOI Listing

Publication Analysis

Top Keywords

ursolic acid
8
polymeric prodrug
8
novel redox-responsive
4
redox-responsive ursolic
4
acid polymeric
4
prodrug delivery
4
delivery system
4
system osteosarcoma
4
osteosarcoma therapy
4
therapy ursolic
4

Similar Publications

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Deciphering the biosynthetic pathway of triterpene saponins in Prunella vulgaris.

Plant J

January 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.

The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified.

View Article and Find Full Text PDF

The Role of Pentacyclic Triterpenoids in Non-Small Cell Lung Cancer: The Mechanisms of Action and Therapeutic Potential.

Pharmaceutics

December 2024

Division of Pulmonology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.

Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the prognosis for advanced NSCLC remains poor, owing to limited treatment options.

View Article and Find Full Text PDF

Compounds Involved in the Invasive Characteristics of .

Molecules

January 2025

Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan.

L. is native to tropical America and has naturalized in many other tropical, subtropical, and temperate regions in Asia, Africa, Oceania, North and South America, and Europe. infests diverse habitats with a wide range of climatic factors, and its population increases aggressively as one of the world's 100 worst invasive alien species.

View Article and Find Full Text PDF

Complex phytonutrients (CPS) have attracted extensive interest due to their anti-inflammatory effects. This investigation focused on the impact of CPS on rumen health in lambs on high-concentrate diets, emphasizing growth performance, ruminal fermentation, epithelial barrier integrity, ruminal metabolism, and microbial communities. A total of 54 lambs, 3 months old and with a 30.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!