Topological soliton states, existing in the topological structures with edge defect or interface defect, are usually studied under steady state. Here, we experimentally observe the dynamic processes of the generation and the extinction of such soliton states in the Su-Schrieffer-Heeger model. The different topological structures are implemented on a programmable nanomechanical lattice, consisting of eight adjacent string resonators which are parametrically coupled by manipulation voltages. Moreover, the beating and localization behaviors at different topological interfaces are also observed in the same device. These results explicitly exhibit the dynamic processes of topological soliton states, which reveal real potential toward integrated multifunctional topological materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c04121 | DOI Listing |
Nanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFIn this Letter, we investigate the binding mechanism and motion dynamics of the bound state consisting of two pure-quartic solitons (PQSs) with unequal intensities and find that their movement occurs as an entity under the Raman self-frequency shift. By calculating the forces that induce the relative motion between the unequal PQSs, we derive the balanced conditions for maintaining a near-constant separation and the constant phase profile between them. The predictions are validated by the numerical simulations.
View Article and Find Full Text PDFA chip-scaled single-soliton microcomb source promises wide applications in various fields. We demonstrate the deterministic single-soliton generation from both pump forward and backward tunings via sideband thermal compensation. The total soliton existing range (SER) is effectively expanded due to the thermal-lock effect and remains nearly the same regardless of the soliton states.
View Article and Find Full Text PDFWe predict the existence of a novel type of temporal localized structure in injected Kerr-Gires-Tournois interferometers (KGTI). These bright pulses exist in the normal dispersion regime, yet they do not correspond to the usual scenario of domain wall locking that induces complex shape multistability, weak stability, and a reduced domain of existence. The new states are observed beyond the mean-field limit and out of the bistable region.
View Article and Find Full Text PDFSci Adv
December 2024
College of Physics, Sichuan University, Chengdu, Sichuan 610064, China.
Polaritons in two-dimensional (2D) materials provide unique opportunities for controlling light at nanoscales. Tailoring these polaritons via gradient polaritonic surfaces with space-variant response can enable versatile light-matter interaction platforms with advanced functionalities. However, experimental progress has been hampered by the optical losses and poor light confinement of conventionally used artificial nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!