For antagonizing urgent water pollution and increasing environmental consciousness, the integration of renewable resources and nanotechnologies has become a trend to improve water quality in the ecosystem. Here, we designed a green route to fabricate regenerated cellulose fibers (CFs) with 3D micro- and nanoporous structures in NaOH/urea aqueous solvent systems via a scalable wet-spinning procedure as support materials for nanoparticles (NPs). Modification of CFs with polyaniline@Ag nanocomposites through in situ reduction of the silver ion with aqueous aniline led to enhanced pollutant removal efficiency of functional cellulose-based fibers (FCFs), demonstrating both rapid hydrogenation catalytic performance for the reduction of -nitrophenol and high antibacterial properties for in-flow water purification. Most importantly, the hierarchically porous structures of FCFs not only provided carrier space but also formed a limiting domain guaranteeing the homogeneity of FCFs even with a Ag NP content as high as 36.47 wt %. The prepared functional fibers show good behavior in in-flow water purification, representing significant advancement in the use of biomass fibers for catalytic and bactericidal applications in liquid media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20188DOI Listing

Publication Analysis

Top Keywords

in-flow water
8
water purification
8
fibers
5
water
5
bifunctional regenerated
4
regenerated cellulose/polyaniline/nanosilver
4
cellulose/polyaniline/nanosilver fibers
4
fibers catalyst/bactericide
4
catalyst/bactericide water
4
water decontamination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!