Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew-normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM-type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.8870 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!