This study was intended to investigate physico-chemical, rheological, and emulsifying properties of oil-in-water emulsions prepared from the Kluyveromyces marxianus mannoprotein (KMM). Also, the stress-response function of the KMM emulsions was compared with that of the whey protein concentrate (WPC) emulsions in terms of zeta potential, size, and rheology. The stress experiments were conducted at different pH (3 to 9), ionic composition (0 to 500 mM NaCl), and temperatures (30 to 90 °C). The extracted KMM with a molecular weight of 107.2 kDa had 28.8% proteins and 68.22% carbohydrates. With increasing the KMM concentration to 1.5% (w/w), the zeta potential, droplet size, and apparent viscosity of the emulsions reached -35 mV, ∼1 μ, and ∼9 mPa·s, respectively. After applying pH, ionic composition, and temperature, the KMM emulsions were more stable than the WPC emulsions. In conclusion, KMM can be used as a bioemulsifier and be more effective in stabilizing emulsions than WPC. PRACTICAL APPLICATION: Yeasts are a rich source of natural materials. In this study, we extracted mannoproteins from the yeast cell wall and evaluated their functional properties to be used as an emulsifier in oil-in-water emulsions. The results of this study confirm that the yeast-derived mannoproteins are good at stabilizing these emulsions either in the presence or absence of different environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15584DOI Listing

Publication Analysis

Top Keywords

oil-in-water emulsions
12
emulsions
10
kluyveromyces marxianus
8
marxianus mannoprotein
8
kmm emulsions
8
wpc emulsions
8
zeta potential
8
ionic composition
8
stabilizing emulsions
8
kmm
6

Similar Publications

L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.

Pharmaceutics

December 2024

Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.

View Article and Find Full Text PDF

Emulsifiers with antioxidant properties, such as protein/polyphenol complexes, adsorb at the oil-water interface and improve the physical and oxidative stability of emulsions. Here, 2% (/) sodium caseinate and varying concentrations of phloretin (0-10 mM) were used to stabilize oil-in-water emulsions. Control emulsions with protein alone showed poor stability with increased droplet sizes from 0.

View Article and Find Full Text PDF

Background: Foot-and-mouth disease (FMD) causes significant economic losses, prompting vaccination as a primary control strategy. Virus-like particles (VLPs) have emerged as promising candidates for FMD vaccines but require adjuvants to enhance their immunogenicity. In this study, we evaluated the immunogenicity of a VLP-based vaccine with a water-in-oil-in-water (W/O/W) emulsion adjuvant, named WT.

View Article and Find Full Text PDF

This study investigates the development and comprehensive characterization of innovative thermoresponsive gels incorporating rosemary essential oil (RoEO) encapsulated in poly(lactic--glycolic acid) (PLGA) microparticles, with a focus on their potential applications in topical antimicrobial and wound healing therapies. RoEO, renowned for its robust antimicrobial, antioxidant, and wound-healing properties, was subjected to detailed chemical profiling using gas chromatography-mass spectrometry (GC-MS), which identified oxygenated monoterpenes as its dominant constituents. PLGA microparticles were synthesized through an optimized oil-in-water emulsion technique, ensuring high encapsulation efficiency and structural integrity.

View Article and Find Full Text PDF

Understanding the adsorption features of polymer microgels with different chemical compositions and structures is crucial in studying the mechanisms of respective emulsion stabilization. Specifically, the use of stimuli-responsive particles can introduce new properties and broaden the application range of such complex systems. Recently, we demonstrated that emulsions stabilized by microgels composed of interpenetrating networks (IPNs) of poly-N-isopropylacrylamide (PNIPAM) and polyacrylic acid (PAA) exhibit higher colloidal stability upon heating compared to PNIPAM homopolymer and other relevant PNIPAM-based copolymer counterparts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!