Many macrophytes have heavy metal phytoremediation potential from contaminated watercourses. Therefore, the present study investigated the seasonal potential of the sedge plant Cyperus alopecuroides to remediate heavy metals from contaminated water bodies. Water, sediment, and plant samples were collected from four contaminated watercourses and the uncontaminated Nile River. Summer was the blooming season of C. alopecuroides with the highest shoot density, leaf size, fresh production, and dry biomass, while winter represented the lowest growth season. The photosynthetic pigments were distinctly decreased in plants growing in contaminated compared to the uncontaminated sites. Plant roots accumulated concentrations of all measured heavy metals, except Ni, Cu, Zn, and Pb, more significant than the shoot. The maximum concentrations of Al, Ni, and Pb were recorded during spring, while the highest Cd, Cr, Fe, and Mn were recorded during summer. The bioconcentration factor (BCF) of all investigated metals (except Al) was > 1, while the translocation factor (TF) of all elements (except Pb) was ˂ 1. These results indicated the capability of C. alopecuroides for metal phytostabilization and considered the target species a powerful phytoremediator for monitoring water pollution in contaminated wetlands. In this context, the above- and belowground parts of C. alopecuroides should be harvested in summer for efficient phytoremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-12308-4 | DOI Listing |
Environ Sci Pollut Res Int
April 2023
School of Mechanical and Industrial Engineering, Ethiopian Institute of Technology, Mekelle University, Mekelle, Ethiopia.
Native plant species growing on metal contaminated soil at the foot of the Legadembi tailings dam were selected to evaluate their phytoremediation potential. For this purpose, soil, aboveground tissues, and roots of plant samples were analyzed for the concentrations of Zn, Cu, Ni, Pb, and Cd. The bioaccumulation and transfer of metals were evaluated in terms of translocation factor (TF), bioconcentration factor (BCF), and biological accumulation coefficient (BAC).
View Article and Find Full Text PDFBiology (Basel)
June 2021
Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
The current study addressed the heavy metals accumulation potentials of seven perennial aquatic macrophytes (, , , , , and ) and the pollution status of three drains (Amar, El-Westany and Omar-Beck) in the Nile Delta of Egypt. Nine sites at each drain were sampled for sediment and plant analyses. Concentrations of eight metals (Fe, Cu, Zn, Mn, Co, Cd, Ni, and Pb) were determined in the sediment and the aboveground and belowground tissues of the selected macrophytes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2021
Environmental Engineering Graduate Program, The American University in Cairo, New Cairo, Egypt.
Bench-scale and pilot-scale experiments were conducted in an outdoor environment to study the ability of some plant species in dewatering of sewage sludge collected from biological activated sludge treatment. In the bench-scale experiments, four types of plants were tested, including water hyacinth (Eichhornia crassipes), common reed (Phragmites austuralis), Samar (Cyperus alopecuroides), and El Nesila (Panicum echinochloa). Sludge dewatering in the plant reactors was compared with that in the control reactors (no plants).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2021
Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt.
Many macrophytes have heavy metal phytoremediation potential from contaminated watercourses. Therefore, the present study investigated the seasonal potential of the sedge plant Cyperus alopecuroides to remediate heavy metals from contaminated water bodies. Water, sediment, and plant samples were collected from four contaminated watercourses and the uncontaminated Nile River.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
February 2006
Institute of Toxicology, Heinrich-Heine-University, P.O. Box 101007, 40001 Düsseldorf, Germany.
Polyphenols are ubiquitous substances in human diet. Their antioxidative, antiinflammatory and antiviral effects are of interest for human health, and polyphenols such as luteolin are used at high concentrations in food supplements. Luteolin is metabolized to glucuronides, but also to methylated derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!