This research paper aims at studying the impact of lockdown on the dynamics of novel Corona Virus Disease (COVID-19) emerged in Wuhan city of China in December 2019. Perceiving the pandemic situation throughout the world, Government of India restricted international passenger traffic through land check post (Liang, 2020) and imposed complete lockdown in the country on 24 March 2020. To study the impact of lockdown on disease dynamics we consider a three-dimensional mathematical model using nonlinear ordinary differential equations. The proposed model has been studied using stability theory of nonlinear ordinary differential equations. Basic reproduction ratio is computed and significant parameters responsible to keep basic reproduction ratio less than one are identified. The study reveals that disease vanishes from the system only if complete lockdown is imposed otherwise disease will always persist in the population. However, disease can be kept under control by implementing contact tracing and quarantine measures as well along with lockdown if lockdown is imposed partially.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789846 | PMC |
http://dx.doi.org/10.1016/j.idm.2020.12.010 | DOI Listing |
Chaos
January 2025
Physics Institute, University of São Paulo, 05508-090 São Paulo, SP, Brazil.
In this work, we investigate the dynamics of a discrete-time prey-predator model considering a prey reproductive response as a function of the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of growth parameters.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematics and Statistics, University College Dublin, Dublin 4 D04 V1W8, Ireland.
Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.
View Article and Find Full Text PDFChaos
January 2025
Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
Experimental observations and field data demonstrated that predators adapt their hunting strategies in response to prey abundance. While previous studies explored the impact of predation risk on predator-prey interactions, the impact of symbiotic relationships between fear-affected prey and non-prey species on system dynamics remains unexplored. This study uses a mathematical approach to investigate how different symbiotic relationships govern system dynamics when predators adapt to prey availability.
View Article and Find Full Text PDFChaos
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Vaccine Study Center, Northern California Division of Research, Kaiser Permanente, Oakland, CA, United States.
Background: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!