A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ATF3 expression in cardiomyocytes and myofibroblasts following transverse aortic constriction displays distinct phenotypes. | LitMetric

ATF3 expression in cardiomyocytes and myofibroblasts following transverse aortic constriction displays distinct phenotypes.

Int J Cardiol Heart Vasc

Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.

Published: February 2021

Background: Activating transcription 3 (ATF3) is a member of the basic leucine zipper family of transcription factors. ATF3 is an immediate early gene expressed following various cellular stresses. ATF3 acts through binding to cyclic AMP response elements found in the promoters of key regulatory proteins that determine cell fate. In the heart, multiple cardiac stresses result in chronic ATF3 expression. Transgenic mice with ATF3 expression in cardiomyocytes clearly demonstrate that ATF3 serves a leading role in heart hypertrophy, cardiac fibrosis, cardiac dysfunction and death. In contrast, the use of ATF3 whole body knockout mice resulted non-conclusive results. The heart is composed of various cell types such as cardiomyocytes, fibroblasts, endothelial and immune cells. The question that we addressed in this study is whether ablation of ATF3 in unique cell types in the heart results in diverse cardiac phenotypes.

Methods: ATF3-flox mice were crossed with αMHC and Postn specific promoters directing CRE expression and thus ATF3 ablation in cardiomyocytes and myofibroblast cells. Mice were challenged with transverse aortic constriction (TAC) for eight weeks and heart function, ventricle weight, hypertrophic markers, fibrosis markers and ATF3 expression were assessed by qRT-PCR.

Results: The results of the study show that ATF3 deletion in cardiomyocytes followed by TAC resulted in reduced heart growth and dampened fibrosis response while ATF3 ablation in myofibroblasts displayed a reduced hypertrophic gene program.

Conclusions: TAC-operation results in increased ATF3 expression in both myofibroblasts and cardiomyocytes that promotes a hypertrophic program and fibrotic cardiac growth, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786009PMC
http://dx.doi.org/10.1016/j.ijcha.2020.100706DOI Listing

Publication Analysis

Top Keywords

atf3 expression
20
atf3
14
expression cardiomyocytes
8
transverse aortic
8
aortic constriction
8
cell types
8
atf3 ablation
8
cardiomyocytes
6
heart
6
cardiac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!