Chronic kidney disease (CKD) patients obtained high levels of uremic toxins progressively develop several complications including bone fractures. Protein-bound uremic toxins especially p-cresol and indoxyl sulfate are hardly eliminated due to their high molecular weight. Thus, the abnormality of bone in CKD patient could be potentially resulted from the accumulation of uremic toxins. To determine whether protein-bound uremic toxins have an impact on osteogenesis, mesenchymal stem cells were treated with either p-cresol or indoxyl sulfate under osteogenic differentiation. The effects of uremic toxins on MSC-osteoblastic differentiation were investigated by evaluation of bone phenotype. The results demonstrated that p-cresol and indoxyl sulfate down-regulated the transcriptional level of collagen type I, deceased alkaline phosphatase activity, and impaired mineralization of MSC-osteoblastic cells. Furthermore, p-cresol and indoxyl sulfate gradually increased senescence-associated beta-galactosidase positive cells while upregulated the expression of which participate in senescent process. Our findings clearly revealed that the presence of uremic toxins dose-dependently influenced a gradual deterioration of osteogenesis. The effects partially mediate through the activation of senescence-associated gene lead to the impairment of osteogenesis. Therefore, the management of cellular senescence triggered by uremic toxins could be considered as an alternative therapeutic approach to prevent bone abnormality in CKD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797544PMC
http://dx.doi.org/10.7150/ijms.48492DOI Listing

Publication Analysis

Top Keywords

uremic toxins
28
indoxyl sulfate
20
p-cresol indoxyl
16
osteogenic differentiation
8
mesenchymal stem
8
ckd patients
8
protein-bound uremic
8
uremic
7
toxins
7
sulfate
5

Similar Publications

Pain is a frequent and disturbing symptom among hemodialysis patients. Protein-bound uremic toxins (PBUTs) are related to cardiovascular and overall mortality, and they are difficult to remove with current hemodialysis treatments. The PBUT displacers, such as furosemide, tryptophan, or ibuprofen, may be promising new strategies for improving their clearance.

View Article and Find Full Text PDF

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.

View Article and Find Full Text PDF

Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the optimal way to create activated carbon from pineapple waste (leaves and peels) through pyrolysis and its combination with sodium alginate to form a bio-complex.
  • - Pyrolysis at 800 °C and activation with CO for 30 minutes resulted in high surface areas for the activated carbon, and while its microstructures showed some differences compared to commercial activated carbon, they had promising adsorption capabilities for uremic toxins.
  • - The research highlights the potential for developing cost-effective adsorbent products from agricultural waste, aiming to effectively target uremic toxins in simulated gastrointestinal conditions, fitting into a circular economy perspective.
View Article and Find Full Text PDF

Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!