It has been a key issue for photovoltaic (PV) cells to survive under mechanical impacts by tiny dust. In this paper, the performance degradation and the damage behavior of PV cells subjected to massive dust impact are investigated using laser-shock driven particle impact experiments and mechanical modeling. The results show that the light-electricity conversion efficiency of the PV cells decreases with increasing the impact velocity and the particles' number density. It drops from 26.7 to 3.9% with increasing the impact velocity from 40 to 185 m/s and the particles' number densities from 35 to 150/mm, showing a reduction up to 85.7% when being compared with the intact ones with the light-electricity conversion efficiency of 27.2%. A damage-induced conversion efficiency degradation (DCED) model is developed and validated by experiments, providing an effective method in predicting the performance degradation of PV cells under various dust impact conditions. Moreover, three damage modes, including damaged conducting grid lines, fractured PV cell surfaces, and the bending effects after impact are observed, and the corresponding strength of each mode is quantified by different mechanical theories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804249 | PMC |
http://dx.doi.org/10.1038/s41598-020-80879-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!