The need for the estimation of the number of microbubbles (MBs) in cardiopulmonary bypass surgery has been recognized among surgeons to avoid postoperative neurological complications. MBs that exceed the diameter of human capillaries may cause endothelial disruption as well as microvascular obstructions that block posterior capillary blood flow. In this paper, we analyzed the relationship between the number of microbubbles generated and four circulation factors, i.e., intraoperative suction flow rate, venous reservoir level, continuous blood viscosity and perfusion flow rate in cardiopulmonary bypass, and proposed a neural-networked model to estimate the number of microbubbles with the factors. Model parameters were determined in a machine-learning manner using experimental data with bovine blood as the perfusate. The estimation accuracy of the model, assessed by tenfold cross-validation, demonstrated that the number of MBs can be estimated with a determinant coefficient R = 0.9328 (p < 0.001). A significant increase in the residual error was found when each of four factors was excluded from the contributory variables. The study demonstrated the importance of four circulation factors in the prediction of the number of MBs and its capacity to eliminate potential postsurgical complication risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804121PMC
http://dx.doi.org/10.1038/s41598-020-80810-3DOI Listing

Publication Analysis

Top Keywords

number microbubbles
16
cardiopulmonary bypass
12
microbubbles generated
8
generated circulation
8
circulation factors
8
flow rate
8
number
5
neural network-based
4
network-based modeling
4
modeling number
4

Similar Publications

Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.

View Article and Find Full Text PDF

Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.

View Article and Find Full Text PDF

Background: Microbubble enhanced ultrasound (MEUS) can augment tissue perfusion by angiogenesis yet the best treatment ultrasound power in the initial ischemia period is uncertain.

Purpose: Considering the mechanical index (MI) is the most commonly used parameter for regulating diagnostic ultrasound power, here, we explored the effects of MEUS mediated by different MI on perfusion and sought to characterize the angiogenesis in the early stage of ischemia.

Methods: Experiments were conducted on hind limb ischemia mouse model (HLI) and MEUS was administrated in the first week every other day following induction of HLI for four times.

View Article and Find Full Text PDF

Gene therapy has received great attention as a therapeutic approach to improve cardiac function post-myocardial infarction (MI), but its limitation lies in the lack of targeting. This study explored the use of ultrasound-targeted microbubble destruction (UTMD) technique to deliver β-catenin gene to the myocardium, aiming to evaluate its efficacy in preventing cardiac dysfunction post-MI. A cationic microbubble solution containing β-catenin gene pcDNA3.

View Article and Find Full Text PDF

Both the biological effects and acoustic emissions generated by cavitation are functions of bubble dynamics. Monitoring of acoustic emissions is therefore desirable to improve treatment safety and efficacy. The relationship between the emission spectra and bubble dynamics is, however, complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!