Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bedload transport modelling in rivers takes into account the size and density of pebbles to estimate particle mobility, but does not formally consider particle shape. To address this issue and to compare the relative roles of the density and shape of particles, we performed original sediment transport experiments in an annular flume using molded artificial pebbles equipped with a radio frequency identification tracking system. The particles were designed with four distinct shapes and four different densities while having the same volume, and their speeds and distances traveled under constant hydraulic conditions were analyzed. The results show that particle shape has more influence than particle density on the resting time between particle displacement and the mean traveling distance. For all densities investigated, the particle shape systematically induced differences in travel distance that were strongly correlated (R = 0.94) with the Sneed and Folks shape index. Such shape influences, although often mentioned, are here quantified for the first time, demonstrating why and how they can be included in bedload transport models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804298 | PMC |
http://dx.doi.org/10.1038/s41598-020-79930-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!