Concentration-dependent oscillation of specific loss power in magnetic nanofluid hyperthermia.

Sci Rep

Nanobiomagnetics and Bioelectronics Laboratory (NB2L), Department of Electrical Engineering, University of South Carolina, 301 Main Street, Columbia, SC, 29208, USA.

Published: January 2021

AI Article Synopsis

  • The study focuses on the significance of magnetic dipole coupling between superparamagnetic nanoparticles and how their concentration affects Specific Loss Power (SLP) in magnetic nanofluid hyperthermia (MNFH).
  • Despite extensive research, the reasons behind the concentration-dependent changes in SLP are still not fully understood, leading to some inconsistent findings.
  • The authors identify energy competition among various magnetic energy types as the key factor driving the oscillation behavior of SLP, offering important insights for effectively using MNFH in cancer treatment.

Article Abstract

Magnetic dipole coupling between the colloidal superparamagnetic nanoparticles (SPNPs) depending on the concentration has been paid significant attention due to its critical role in characterizing the Specific Loss Power (SLP) in magnetic nanofluid hyperthermia (MNFH). However, despite immense efforts, the physical mechanism of concentration-dependent SLP change behavior is still poorly understood and some contradictory results have been recently reported. Here, we first report that the SLP of SPNP MNFH agent shows strong concentration-dependent oscillation behavior. According to the experimentally and theoretically analyzed results, the energy competition among the magnetic dipole interaction energy, magnetic potential energy, and exchange energy, was revealed as the main physical reason for the oscillation behavior. Empirically demonstrated new finding and physically established model on the concentration-dependent SLP oscillation behavior is expected to provide biomedically crucial information in determining the critical dose of an agent for clinically safe and highly efficient MNFH in cancer clinics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804452PMC
http://dx.doi.org/10.1038/s41598-020-79871-1DOI Listing

Publication Analysis

Top Keywords

oscillation behavior
12
concentration-dependent oscillation
8
specific loss
8
loss power
8
magnetic nanofluid
8
nanofluid hyperthermia
8
magnetic dipole
8
concentration-dependent slp
8
magnetic
5
concentration-dependent
4

Similar Publications

Objective: Lennox-Gastaut syndrome (LGS) is typically characterized by drug-resistant epilepsy and subsequent cognitive deterioration. Surgery is a rare but viable option for the control of seizures in a subset of patients with LGS. This study aimed to describe the organization of the epileptogenic zone network (EZN) in patients with LGS using stereoelectroencephalography (SEEG) and to report the outcome of post-SEEG treatment.

View Article and Find Full Text PDF

In this study, a relationship between climate indices (local - air temperatures, and wide-scale - North Atlantic Oscillation) and first arrival dates (FAD) of a short-distant migratory bird, the Common Wood Pigeon (Columba palumbus) at a breeding site in SE Poland (Lublin) was investigated. Temporal patterns of FAD on a multi-year scale (20 years within 39 years between 1982 and 2020) were also studied. Additionally, correlations between mean air temperature at Lublin and sites along the spring migration route with various distances from the breeding site and various time lags were searched for.

View Article and Find Full Text PDF

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!