Ektacytometry has been the primary method for evaluating deformability of red blood cells (RBCs) in both research and clinical settings. This study was designed to test the hypothesis that the flow of RBCs through a network of microfluidic capillaries could provide a more sensitive assessment of the progressive impairment of RBC deformability during hypothermic storage than ektacytometry. RBC units (n = 9) were split in half, with one half stored under standard (normoxic) conditions and the other half stored hypoxically, for up to 6 weeks. RBC deformability was measured weekly using two microfluidic devices, an artificial microvascular network (AMVN) and a multiplexed microcapillary network (MMCN), and two commercially available ektacytometers (RheoScan-D and LORRCA). By week 6, the elongation indexes measured with RheoScan-D and LORRCA decreased by 5.8-7.1% (5.4-6.9% for hypoxic storage). Over the same storage duration, the AMVN perfusion rate declined by 27.5% (24.5% for hypoxic) and the MMCN perfusion rate declined by 49.0% (42.4% for hypoxic). Unlike ektacytometry, both AMVN and MMCN measurements showed statistically significant differences between the two conditions after 1 week of storage. RBC morphology deteriorated continuously with the fraction of irreversibly-damaged (spherical) cells increasing significantly faster for normoxic than for hypoxic storage. Consequently, the number of MMCN capillary plugging events and the time MMCN capillaries spent plugged was consistently lower for hypoxic than for normoxic storage. These data suggest that capillary networks are significantly more sensitive to both the overall storage-induced decline of RBC deformability, and to the differences between the two storage conditions, than ektacytometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804960 | PMC |
http://dx.doi.org/10.1038/s41598-020-79710-3 | DOI Listing |
Biomech Model Mechanobiol
January 2025
CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.
The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
UOSA Diabetologia, Fondazione IRCCS, University Agostino Gemelli, 00168 Rome, Italy.
In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs).
View Article and Find Full Text PDFDatabase (Oxford)
December 2024
School of Computing and Mathematical Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK.
Visual analysis of peripheral blood smear slides using medical image analysis is required to diagnose red blood cell (RBC) morphological deformities caused by anemia. The absence of a complete anaemic RBC dataset has hindered the training and testing of deep convolutional neural networks (CNNs) for computer-aided analysis of RBC morphology. We introduce a benchmark RBC image dataset named Anemic RBC (AneRBC) to overcome this problem.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Electronics and Computer Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310 UTM, Malaysia.
Malaria is endemic in poverty-stricken regions of the world, and most diagnosis reveal comorbidity with other infectious diseases some of which manifest as a deformity of the structural arrangement of the Red Blood Cells (RBCs) during thin blood smear microscopy. This common occurring deformity is termed rouleaux formation, and it is the stacking together of RBCs like chains of coins. The presence of rouleaux formation indicates either a bacterial infection, connective tissue disease, chronic liver disease, multiple myeloma or diabetes among others, it is a highly common occurrence in malaria infected patients and according to the international council for standardization of hematology (ICSH), microscopists are mandated to report its presence.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!