Avalanche criticality during ferroelectric/ferroelastic switching.

Nat Commun

Department of Earth Sciences, Cambridge University, Cambridge, UK.

Published: January 2021

Field induced domain wall displacements define ferroelectric/ferroelastic hysteresis loops, which are at the core of piezoelectric, magnetoelectric and memristive devices. These collective displacements are scale invariant jumps with avalanche characteristics. Here, we analyse the spatial distribution of avalanches in ferroelectrics with different domain and transformation patterns: Pb(MgNb)O-PbTiO contains complex domains with needles and junction patterns, while BaTiO has parallel straight domains. Nevertheless, their avalanche characteristics are indistinguishable. The energies, areas and perimeters of the switched regions are power law distributed with exponents close to predicted mean field values. At the coercive field, the area exponent decreases, while the fractal dimension increases. This fine structure of the switching process has not been detected before and suggests that switching occurs via criticality at the coercive field with fundamentally different switching geometries at and near this critical point. We conjecture that the domain switching process in ferroelectrics is universal at the coercive field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804440PMC
http://dx.doi.org/10.1038/s41467-020-20477-6DOI Listing

Publication Analysis

Top Keywords

coercive field
12
avalanche characteristics
8
switching process
8
switching
5
field
5
avalanche criticality
4
criticality ferroelectric/ferroelastic
4
ferroelectric/ferroelastic switching
4
switching field
4
field induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!