AI Article Synopsis

  • - The study investigates clonal hematopoiesis (CH) in cancer patients and its link to an increased leukemia risk, using blood sequencing data from over 32,000 patients to analyze gene mutations and chromosomal alterations simultaneously.
  • - Findings reveal that certain genetic combinations account for 23% of observed alterations in CH, indicating that these genetic changes occur early in the evolution toward potential leukemia.
  • - The research highlights that chromosomal alterations are significant independent risk factors for leukemia development, suggesting that both gene mutations and chromosomal changes should be monitored in patients at risk.

Article Abstract

Stably acquired mutations in hematopoietic cells represent substrates of selection that may lead to clonal hematopoiesis (CH), a common state in cancer patients that is associated with a heightened risk of leukemia development. Owing to technical and sample size limitations, most CH studies have characterized gene mutations or mosaic chromosomal alterations (mCAs) individually. Here we leverage peripheral blood sequencing data from 32,442 cancer patients to jointly characterize gene mutations (n = 14,789) and mCAs (n = 383) in CH. Recurrent composite genotypes resembling known genetic interactions in leukemia genomes underlie 23% of all detected autosomal alterations, indicating that these selection mechanisms are operative early in clonal evolution. CH with composite genotypes defines a patient group at high risk of leukemia progression (3-year cumulative incidence 14.6%, CI: 7-22%). Multivariable analysis identifies mCA as an independent risk factor for leukemia development (HR = 14, 95% CI: 6-33, P < 0.001). Our results suggest that mCA should be considered in conjunction with gene mutations in the surveillance of patients at risk of hematologic neoplasms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804935PMC
http://dx.doi.org/10.1038/s41467-020-20565-7DOI Listing

Publication Analysis

Top Keywords

gene mutations
12
chromosomal alterations
8
clonal hematopoiesis
8
cancer patients
8
risk leukemia
8
leukemia development
8
composite genotypes
8
interplay chromosomal
4
alterations gene
4
mutations
4

Similar Publications

Genetic and audiological determinants of hearing loss in high-risk neonates.

Braz J Otorhinolaryngol

January 2025

Shanghai Jiao Tong University, School of Medicine, Hainan Branch of Shanghai Children's Medical Center, Department of Otorhinolaryngology, Sanya, China; Shanghai Jiao Tong University, School of Medicine, Shanghai Children's Medical Center, Department of Otorhinolaryngology, Shanghai, China. Electronic address:

Objective: We aimed to investigate the correlation between prevalent risk factors for high-risk neonates in neonatal intensive care unit and their hearing loss, and to examine the audiological features and genetic profiles associated with different deafness mutations in our tertiary referral center. This research seeks to deepen our understanding of the etiology behind congenital hearing loss.

Methods: We conducted initial hearing screenings, including automated auditory brainstem response, distortion product otoacoustic emission, and acoustic immittance on 443 high-risk neonates within 7 days after birth and 42 days (if necessary) after birth.

View Article and Find Full Text PDF

Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections.

Curr Pharm Des

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China.

Background: The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment.

View Article and Find Full Text PDF

A Splice Site Variant in SENP7 Results in a Severe Form of Arthrogryposis.

Clin Genet

January 2025

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder associated with 1/3000 to 1/5000 live births. We report a consanguineous family with multiple affected members with AMC and identified a recessive mutation in the highly conserved splice donor site, resulting in the mis-splicing of the affected exons. SENP7 is a deSUMOylase that is critical for sarcomere assembly and skeletal muscle contraction by regulating the transcriptional program in the skeletal muscle.

View Article and Find Full Text PDF

A novel BLK heterozygous mutation (p.Met121lle) in maturity-onset diabetes mellitus: A case report and literature review.

Diabet Med

January 2025

Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Department of Endocrinology, Geriatric Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.

Maturity onset diabetes of the young (MODY) is a highly heterogeneous monogenic disease that occurs due to β-cell dysfunction. It is divided into different types depending on the gene mutated, and a total of 16 genes have been found to be associated with MODY. However, due to the current lack of understanding of monogenic diabetes, 90% of MODY is currently misdiagnosed and ignored in clinical practice.

View Article and Find Full Text PDF

Marine natural products show a large variety of unique chemical structures and potent biological activities. Elucidating the target molecule and the mechanism of action is an essential and challenging step in drug development starting with a natural product. Odoamide, a member of aurilide-family isolated from Okinawan marine cyanobacterium, has been known to exhibit highly potent cytotoxicity against various cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!