Background: Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD.

Method: Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals.

Results: Identification of two FSHD families in which the disease is caused by repeat contraction and expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes.

Conclusion: This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273184PMC
http://dx.doi.org/10.1136/jmedgenet-2020-107041DOI Listing

Publication Analysis

Top Keywords

d4z4 repeat
12
fshd
11
transcriptional deregulation
8
gene expression
8
fshd families
8
chromosome
7
chromosome 10q-linked
4
10q-linked fshd
4
fshd identifies
4
identifies principal
4

Similar Publications

Age at onset mediates genetic impact on disease severity in facioscapulohumeral muscular dystrophy.

Brain

December 2024

Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) patients exhibit marked variability in both age at onset (AAO) and disease severity. Early onset FSHD1 patients are at an increased risk of severe weakness, and early onset has been tentatively linked to the length of D4Z4 repeat units (RUs) and methylation levels. The present study explored potential relationships among genetic characteristics, AAO and disease severity in FSHD1.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on Facioscapulohumeral dystrophy type 1 (FSHD1), a serious muscle disorder, and emphasizes the need for a comprehensive approach to understand its genetics.
  • - Researchers conducted genome sequencing and linkage analysis in a family suspected of having FSHD1, identifying a specific disease locus on chromosome 4q35.2.
  • - By using advanced ultra-long-read genome sequencing, they successfully genotyped a pathogenic allele associated with FSHD1, highlighting the effectiveness of these genomic tools in disease mapping and characterization.
View Article and Find Full Text PDF
Article Synopsis
  • FSHD is a muscle-wasting disease caused by the misexpression of the DUX4 transcription factor, leading to progressive muscle weakness starting from facial and shoulder muscles and eventually affecting the lower limbs.
  • The study utilized siRNAs to investigate the role of SIX family transcription factors in regulating DUX4 expression in patient-derived FSHD muscle cells, revealing that SIX1, SIX2, and SIX4 are essential for DUX4 induction during muscle differentiation.
  • Additionally, the research indicated that DUX4 actually downregulates SIX RNA levels, suggesting a negative feedback loop in the regulation of these transcription factors in FSHD contexts.
View Article and Find Full Text PDF

Germline mutations in SMCHD1, DNMT3B and LRIF1 can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2). FSHD is an epigenetic skeletal muscle disorder in which partial failure in heterochromatinization of the D4Z4 macrosatellite repeat causes spurious expression of the repeat-embedded gene in skeletal muscle, ultimately leading to muscle weakness and wasting. All three proteins play a role in chromatin organization and gene silencing; however, their functional relationship has not been fully elucidated.

View Article and Find Full Text PDF

Optical genome mapping reveals maternal mosaicism in two Sibling cases of Early-Onset Facioscapulohumeral muscular dystrophy type 1.

Clin Chim Acta

January 2025

Neonatology Department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China. Electronic address:

Background: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant condition caused by shortened D4Z4 repeat units in the subtelomeric region of 4q35, always on the 4qA haplotype, or due to variants in the SMCHD1 gene leading to hypomethylation of the D4Z4 macrosatellite DNA repeats.

Methods: To explore the potential genetic basis for suspected FSHD presenting with early onset in two siblings without evident family history of the disorder, whole genome sequencing (WGS) and optical genome mapping (OGM) were conducted on the affected individuals and their parents.

Results: The two siblings manifested severe and early-onset clinical features consistent with FSHD, initiating with facial muscle weakness that progressively spread downward since the age of four months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!