Nowadays, access to clean water sources worldwide and particularly in Southern Africa is inadequate because of its pollution by organic, inorganic, and microorganism contaminants. A range of conventional water treatment techniques has been used to resolve the problem. However, these methods are currently facing the confronts posed by new emerging contaminants. Therefore, there is a need to develop simple and lower cost-effective water purification methods that use recyclable bio-based natural polymers such as chitosan modified with nanomaterials. These novel functional chitosan-based nanomaterials have been proven to effectively eliminate the different environmental pollutants from wastewater to acceptable levels. This paper aims to present a review of the recent development of functional chitosan modified with carbon nanostructured and inorganic nanoparticles. Their application as biosorbents in fixed-bed continuous flow column adsorption for water purification is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.117398 | DOI Listing |
AoB Plants
January 2025
Department of Biology, 10 Bailey Drive, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
Water Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFWater Res X
May 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
Treatment methods in traditional Chinese medicine (TCM) are foundational to their theoretical, methodological, formulaic, and pharmacological systems, significantly contributing to syndrome differentiation and therapy. The principle of "promoting urination to regulate bowel movements" is a common therapeutic approach in TCM. The core concept is "promoting the dispersion and drainage of water dampness, regulating urination to relieve diarrhea," yet its scientific underpinning remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!