Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production.

Carbohydr Polym

Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LGP2, F-38000 Grenoble, France; Institut Universitaire de France (IUF), Paris F-75000, France; Nestle Research Center, Lausanne 1100, Switzerland. Electronic address:

Published: March 2021

AI Article Synopsis

Article Abstract

Cellulose nanofibrils were efficiently produced from eucalyptus fibers using a combined NaOH and enzymatic treatment followed by a pilot scale grinding process. The structural changes of fibers were assessed after NaOH treatments at 5, 10 and 15 wt% concentrations. A progressive shift from a cellulose I to a cellulose II crystalline structure was observed with X-ray diffraction (XRD) and nuclear magnetic resonance (NMR). The further enzymatic hydrolysis was improved for the NaOH treated samples. The increase of crystallinity indices due to enzymatic hydrolysis was of + 4.7 %, + 3.5 %, and +10.3 % for samples treated with NaOH 5, 10 and 15 wt% respectively, and DP values were drastically reduced to 340, 190 and 166 respectively. A morphological analysis underlined an optimum with the combination of NaOH 10 wt% and enzymatic hydrolysis. This treatment followed by the grinding process resulted in CNF with a rigid structure, with diameters ranging from 10 to 20 nm and lengths between 150 and 350 nm. A multi-scale analysis enabled to study the impact of this combined treatment on CNF properties and energy consumption. A decrease in mechanical properties of nanopapers was observed for the combined treatment and NaOH treatment alone compared to enzymatic hydrolysis alone, with Young's modulus of 8.94, 4.84 and 11.21 GPa respectively. However, optical properties were improved, with transmittance values of 42.2, 15.4 and 7.1 % respectively. This new pretreatment can therefore lead to CNF with tunable properties depending on the application, with possible industrialization thanks to the reduction of energy needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117383DOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
20
cellulose nanofibrils
8
grinding process
8
naoh wt%
8
combined treatment
8
enzymatic
6
naoh
6
hydrolysis
5
treatment
5
alkaline treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!