Cellulose acetate (CA) is an attractive membrane polymer for CO capture market. However, its low CO permeability hampers its application as part of a membrane for most relevant types of CO containing feeds. This work investigates the enhancement of CA separation performance by incorporating ionic liquid-like pendants (1-methylimidazol, 1-methylpyrrolidine, and 2-hydroxyethyldimethylamine (HEDMA) on the CA backbone. These CA-based polyelectrolytes (PEs), synthesised by covalent grafting of cationic pendants with anion metathesis, were characterised by NMR, FTIR, DSC/TGA, and processed into thin-film composite membranes. The membrane performance in CO/N mixed-gas permeation experiments shows a decrease in CO and N permeability and an initial decrease and then gradual increase in CO/N selectivity with increasing HEDMA content. The amount of HEDMA attached to the CA backbone determines overall separation process in bifunctional PEs. This indicates that the hydroxy-substituted cationic pendants alter interactions between PEs network and permeating CO molecules, suggesting possibilities for further improvements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.117375 | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark.
Environ Sci Pollut Res Int
December 2024
Inorganic and Physical Chemistry Department, CSIR - Central Leather Research Institute (CLRI), Chennai, Tamil Nadu, India, 600020.
To overcome the stringent regulations in the usage of chromium salts and dye-rich effluent let out by the tanning industry, a sustainable way of leather processing has been demonstrated utilizing amine pendant metal-organic frameworks (MOF) UiO-66-NH along with glyoxal. It was found that an offer of 8% (w/w) MOF along with 6% (w/w) glyoxal increased the shrinkage temperature of the leathers to 89 ± 2 °C with exhaustion of MOF up to 84.3 ± 1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France.
Chemistry
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
By virtue of the high reliability of click chemistry, polymers with clickable groups provide a useful platform for the rapid synthesis of polymer materials with diverse functionalities and architectures. However, the polymerization of clickable vinyl monomers with a concurrent regulation on tacticity remains underdeveloped. Herein, we report the successful development of a stereoselective cationic copolymerization of C-C triple bond-containing vinyl ethers with simple alkyl vinyl ethers by employing confined Brønsted acid as catalyst, which allows for the synthesis of alkyne-functionalized vinyl ether copolymers with high isotacticity (up to 90 % m), controlled molecular weight, and variable content of C-C triple bonds.
View Article and Find Full Text PDFDalton Trans
December 2024
Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
The coordination sphere and steric variations in iron catalysts present a fascinating strategy for adjusting monomer regio- and stereoselective enchainment, leading to the development of novel polymer structures in isoprene polymerization. This study investigates a range of iron complexes with variations in the coordination spheres (bidentate and tridentate) and steric/electronic properties of side arms to evaluate their impact on isoprene polymerization. X-ray analysis revealed that the tridentate Fe-NMe2 complex has a dinuclear structure with a -O bridge, where each iron center is monoligated in an octahedral geometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!