Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation.

Carbohydr Polym

Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, United States. Electronic address:

Published: March 2021

In crystalline cellulose I, all glucan chains are ordered from reducing ends to non-reducing ends. Thus, the polarity of individual chains is added forming a large dipole within the crystal. If one can engineer unidirectional alignment (parallel packing) of cellulose crystals, then it might be possible to utilize the material properties originating from polar crystalline structures. However, most post-synthesis manipulation methods reported so far can only achieve the uniaxial alignment with bi-directionality (antiparallel packing). Here, we report a method to induce the parallel packing of bacterial cellulose microfibrils by applying unidirectional shear stress during the synthesis and deposition through the rising bubble stream in a culture medium. Driving force for the alignment is explained with mathematical estimation of the shear stress. Evidences of the parallel alignment of crystalline cellulose Iα domains were obtained using nonlinear optical spectroscopy techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.117328DOI Listing

Publication Analysis

Top Keywords

bacterial cellulose
8
cellulose microfibrils
8
rising bubble
8
bubble stream
8
crystalline cellulose
8
parallel packing
8
shear stress
8
cellulose
5
shear-induced unidirectional
4
unidirectional deposition
4

Similar Publications

Cellulose Based Nano-Scaffolds for Targeted Cancer Therapies: Current Status and Future Perspective.

Int J Nanomedicine

January 2025

Department of General Practice and Family Medicine, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.

In the last few years, cellulose has garnered much interest for its application in drug delivery, especially in cancer therapy. It has special properties like biocompatibility, biodegradability, high porosity, and water permeability render it a good candidate for developing efficient carriers for anticancer agents. Cellulose based nanomaterials like cellulose nanofibers, bacterial cellulose, cellulose nanocrystals and microcrystalline cellulose as delivery vehicles for targeted drug delivery to cancer cells are reviewed.

View Article and Find Full Text PDF

The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.

View Article and Find Full Text PDF

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.

View Article and Find Full Text PDF

Tandem GGDEF-EAL Domain Proteins Pleiotropically Modulate c-di-GMP Metabolism Enrolled in Bacterial Cellulose Biosynthesis.

J Agric Food Chem

January 2025

Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.

Article Synopsis
  • Cyclic diguanosine monophosphate (c-di-GMP) plays a vital role in regulating the synthesis of bacterial cellulose (BC) and is managed by enzymes known as diguanylate cyclases (DGCs) and phosphodiesterases (PDEs).
  • A study analyzed ten proteins with GGDEF-EAL tandem domains, revealing five with DGC activity and five with PDE activity, with one protein (GE03) displaying both functions.
  • Mutant strains lacking GGDEF-EAL proteins showed significant changes in BC production, while knocking out PDE proteins resulted in a 48.1% increase in BC titer, enhancing the understanding of c-di-GMP's role in BC
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!