Obesity is a major risk factor for type 2 diabetes (T2D) although the causal links remain unclear. A feature shared by both conditions however is systemic inflammation and raised levels of circulating fatty acids (FFA). It is widely believed that in obese individuals genetically prone to T2D, elevated levels of plasma FFA may contribute towards the death and dysfunction of insulin-producing pancreatic β-cells in a process of (gluco)lipotoxicity. In support of this, in vitro studies have shown consistently that long-chain saturated fatty acids (LC-SFA) are toxic to rodent β-cells during chronic exposure (> 24 h). Conversely, shorter chain SFA and unsaturated species are well tolerated, suggesting that toxicity is dependent on carbon chain length and/or double bond configuration. Despite the wealth of evidence implicating lipotoxicity as a means of β-cell death in rodents, the evidence that a similar process occurs in humans is much less substantial. Therefore, the present study has evaluated the effects of chronic exposure to fatty acids of varying chain length and degree of saturation, on the viability of human β-cells in culture. We have also studied the effects of a combination of fatty acids and pro-inflammatory cytokines. Strikingly, we find that LC-FFA do not readily promote the demise of human β-cells and that they may even offer a measure of protection against the toxic effects of pro-inflammatory cytokines. Therefore, these findings imply that a model in which elevated circulating LC-FFA play a direct role in mediating β-cell dysfunction and death in humans, may be overly simplistic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802137 | PMC |
http://dx.doi.org/10.1186/s12986-021-00541-8 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Korea.
Mupirocin is an effective antibiotic for infectious skin diseases. However, mupirocin is formulated as an ointment and is difficult to apply in canine systemic pyoderma. Therefore, many clinicians reformulate mupirocin off-label ointment into a spray.
View Article and Find Full Text PDFPPAR Res
December 2024
Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized S2-2 and S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.
View Article and Find Full Text PDF3 Biotech
January 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka Manipal, 576 104 India.
The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!