Interval cancers are a commonly seen problem in organized breast cancer screening programs and their rate is measured for quality assurance. Artificial intelligence algorithms have been proposed to improve mammography sensitivity, in which case it is likely that the interval cancer rate would decrease and the quality of the screening system could be improved. Interval cancers from negative screening in 2011 and 2012 of one regional unit of the national German breast cancer screening program were classified by a group of radiologists, categorizing the screening digital mammography with diagnostic images as true interval, minimal signs, false negative and occult cancer. Screening mammograms were processed using a detection algorithm based on deep learning. Of the 29 cancer cases available, artificial intelligence identified eight out of nine of those classified as minimal signs, all six false negatives and none of the true interval and occult cancers. Sensitivity for lesions judged to be already present in screening mammogram was 93% (95% confidence interval 68-100) and sensitivity for any interval cancer was 48% (95% confidence interval 29-67). Using an artificial intelligence algorithm as an additional reading tool has the potential to reduce interval cancers. How and if this theoretical advantage can be reached without a negative effect on recall rate is a challenge for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0969141320988049 | DOI Listing |
ISA Trans
December 2024
Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. Electronic address:
As artificial intelligence advances and demand for cost-effective equipment maintenance in various fields increases, it is worth insightful research on utilizing robots embedded with sound source localization (SSL) technology for condition monitoring. Combining the two techniques has significant advantages, which are conducive to further classifying and tracking abnormal sources, thereby enhancing system performance at a lower cost. The paper provides an overview of current acoustic-based robotic techniques for condition monitoring, highlights the common SSL methods, and finds that localization performance heavily depends on signal quality.
View Article and Find Full Text PDFNeuroimage
January 2025
College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:
Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.
View Article and Find Full Text PDFCurr Biol
January 2025
Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA; Actions@EBMF, New York, NY 10006, USA.
An emerging frontier in ecology explores how organisms integrate social information into movement behavior and the extent to which information exchange occurs across species boundaries. Most migratory landbirds are thought to undertake nocturnal migratory flights independently, guided by endogenous programs and individual experience. Little research has addressed the potential for social information exchange aloft during nocturnal migration, but social influences that aid navigation, orientation, or survival could be valuable during high-risk migration periods.
View Article and Find Full Text PDFDiagn Interv Imaging
January 2025
Department of Neuroradiology, Hôpital Fondation Adolphe de Rothschild, 75019, Paris, France; Université Paris Cité, Faculté de Médecine, 75006 Paris, France. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!