Adoptive cell transfer (ACT) has long been at the forefront of the battle with cancer that began last century with the therapeutic application of tumor-infiltrating lymphocytes (TILs) against melanoma. The development of novel ACT approaches led researchers and clinicians to highly efficient technologies based on genetically engineered T lymphocytes, with chimeric antigen receptor (CAR)-T cells as the most prominent example. CARs consist of an extracellular domain that represents the single-chain variable fragment (scFv) of a monoclonal antibody (mAb) responsible for target recognition and the intracellular domain, which was built from up to several signaling motifs that mediated T cell activation. The number of potential targets amenable for CAR-T cell therapy is expanding rapidly, which means that the tremendous success of this approach in oncology could be further translated to treating other diseases. In this review, we outlined modern trends and recent developments in CAR-T cell therapy from an unusual point of view by focusing on diseases beyond cancer, such as autoimmune disorders and viral infections, including SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827151 | PMC |
http://dx.doi.org/10.3390/biomedicines9010059 | DOI Listing |
Cytotherapy
December 2024
Barcia Novel Therapies, Lexington, Massachusetts, USA. Electronic address:
Macrophage-based cell therapies represent a cutting-edge frontier in immunotherapy, offering distinct advantages over conventional approaches like CAR-T. This review explores the potential of macrophages to orchestrate both innate and adaptive immune responses, enhancing the body's ability to combat diseases locally and systemically. Dubbed a "Smart Cell Therapy," macrophages can initiate and coordinate complex immunological cascades, leveraging multiple immune system components while also performing effector functions.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.
The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy.
Chimeric antigen receptor (CAR) T-cell therapy represents one of the most impressive advances in anticancer therapy of the last decade. While CAR T-cells are gaining ground in various B cell malignancies, their use in acute myeloid leukemia (AML) remains limited, and no CAR-T product has yet received approval for AML. The main limitation of CAR-T therapy in AML is the lack of specific antigens that are expressed in leukemic cells but not in their healthy counterparts, such as hematopoietic stem cells (HSCs), as their targeting would result in an on-target/off-tumor toxicity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany.
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!