Modeling the effect of mutations on protein thermodynamics stability is useful for protein engineering and understanding molecular mechanisms of disease-causing variants. Here, we report a new development of the SAAFEC method, the SAAFEC-SEQ, which is a gradient boosting decision tree machine learning method to predict the change of the folding free energy caused by amino acid substitutions. The method does not require the 3D structure of the corresponding protein, but only its sequence and, thus, can be applied on genome-scale investigations where structural information is very sparse. SAAFEC-SEQ uses physicochemical properties, sequence features, and evolutionary information features to make the predictions. It is shown to consistently outperform all existing state-of-the-art sequence-based methods in both the Pearson correlation coefficient and root-mean-squared-error parameters as benchmarked on several independent datasets. The SAAFEC-SEQ has been implemented into a web server and is available as stand-alone code that can be downloaded and embedded into other researchers' code.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827184 | PMC |
http://dx.doi.org/10.3390/ijms22020606 | DOI Listing |
ACS Nano
January 2025
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.
View Article and Find Full Text PDFDev Growth Differ
January 2025
Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
The neural tube, the embryonic precursor to the vertebrate central nervous system, comprises distinct progenitor and neuronal domains, each with specific proliferation programs. In this study, we identified TMEM196, a novel transmembrane protein that plays a crucial role in regulating cell proliferation in the floor plate in chick embryos. TMEM196 is expressed in the floor plate, and its overexpression leads to reduced cell proliferation without affecting the pattern formation of the neural tube.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 20025, China.
Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.
Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!