Pyrethroid and neonicotinoid pesticides control an array of insect pests in leafy greens, but there are concerns about the off-site movement and potential water quality impacts of these chemicals. Effective on-farm management practices can eliminate aquatic toxicity and pesticides in runoff. This project evaluated an integrated vegetated treatment system (VTS), including the use of polyacrylamide (PAM), for minimizing the toxicity of imidacloprid and permethrin pesticides in runoff. The VTS incorporated a sediment trap to remove coarse particles, a grass-lined ditch with compost swales to remove suspended sediment and insecticides, and granulated activated carbon (GAC) or biochar to remove residual insecticides. Runoff was sampled throughout the VTS and analyzed for pesticide concentrations, and aquatic toxicity using the midge and the amphipod . In simulated runoff experiments, the VTS reduced suspended sediment load by 88%, and imidacloprid and permethrin load by 97% and 99%, respectively. In runoff events from a conventionally grown lettuce field, suspended sediment load was reduced by 98%, and insecticide load by 99%. Toxicity was significantly reduced in approximately half of the simulated runoff events, and most of the lettuce runoff events. Integrated vegetated treatment systems that include components for treating soluble and hydrophobic pesticides are vital tools for reducing pesticide load and occurrence of pesticide-related toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826557PMC
http://dx.doi.org/10.3390/toxics9010007DOI Listing

Publication Analysis

Top Keywords

integrated vegetated
12
vegetated treatment
12
imidacloprid permethrin
12
suspended sediment
12
runoff events
12
treatment system
8
runoff
8
aquatic toxicity
8
pesticides runoff
8
simulated runoff
8

Similar Publications

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

Distribution and Conservation of .

Ecol Evol

January 2025

Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences Nanjing Forestry University Nanjing China.

With global warming and increasingly intensified human activities, numerous species are on the verge of extinction, ca. 28% of living species are threatened globally, although conservation of endangered species has received worldwide attention. It remains unclear if threatened species have been appropriately conserved or not.

View Article and Find Full Text PDF

Environmental factors lead mainly to the uncertainty of gross primary productivity estimation in most light use efficiency (LUE, ε) models since the simple physical formulas are inadequate to fully express the overall constraint of diverse environmental factors on the maximum ε (ε). In contrast, machine learning has the natural potential to detect intricate patterns and relationships among various environmental variables. Here, we presented a hybrid model (TL-CRF) that utilizes the random forest (RF) technique to incorporate various ecological stress factors into the two-leaf LUE (TL-LUE) model, meanwhile, seasonal differences in the clumping index (CI) on a global scale are considered to adjust seasonal patterns of canopy structure.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!