Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826946 | PMC |
http://dx.doi.org/10.3390/ijms22020629 | DOI Listing |
Chem Sci
January 2025
Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Pharmacy Programme, Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus.
Front Microbiol
January 2025
School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.
Approximately 40-50% of municipal solid waste is organic and causing biogenic malodor and infections, due to inefficient treatment methods. Biorefinery-based bioremediation and valorization is in vogue against these conventional strategies since it combines unit operations for better efficiency and productivity. Deriving inspiration, the proposed strategy puts together a unique and compatible combination of processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CIC nanoGUNE, Donostia-San Sebastián 20018, Spain.
Inspired by the properties of natural chitin, the present work provides the first solid foundation for growing conformal ultrathin antibacterial films of organic chitin through a solvent-free molecular layer deposition (MLD) process. This work establishes the initial groundwork for growing biomimetic hybrid cuticles by combining sugar-type molecules with vapor-phase metal-organic precursors, which we term metallochitins or, more generally, metallosaccharides. The MLD process, featuring mild temperatures and solvent-free conditions, provides exceptional conformality and thickness precision, ensuring highly conformal coatings on diverse high aspect ratio substrates.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China.
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!